Spaces:
Runtime error
Runtime error
gkrthk
commited on
Commit
•
7f409ac
1
Parent(s):
fb5c9b9
fix
Browse files- confluence_qa.py +9 -12
confluence_qa.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from langchain.document_loaders import ConfluenceLoader
|
2 |
from langchain.text_splitter import CharacterTextSplitter, TokenTextSplitter,RecursiveCharacterTextSplitter,SentenceTransformersTokenTextSplitter
|
3 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,pipeline,
|
4 |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
5 |
from langchain.prompts import PromptTemplate
|
6 |
from langchain.chains import RetrievalQA
|
@@ -12,13 +12,10 @@ class ConfluenceQA:
|
|
12 |
self.embeddings = HuggingFaceEmbeddings(model_name="multi-qa-MiniLM-L6-cos-v1")
|
13 |
|
14 |
def define_model(self) -> None:
|
15 |
-
tokenizer =
|
16 |
-
model =
|
17 |
-
|
18 |
-
|
19 |
-
# model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
|
20 |
-
pipe = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
21 |
-
self.llm = HuggingFacePipeline(pipeline = pipe,model_kwargs={"temperature": 0})
|
22 |
|
23 |
def store_in_vector_db(self) -> None:
|
24 |
persist_directory = self.config.get("persist_directory",None)
|
@@ -31,12 +28,11 @@ class ConfluenceQA:
|
|
31 |
url=confluence_url, username=username, api_key=api_key
|
32 |
)
|
33 |
documents = loader.load(include_attachments=include_attachment, limit=100, space_key=space_key)
|
34 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=
|
35 |
documents = text_splitter.split_documents(documents)
|
36 |
self.db = Chroma.from_documents(documents, self.embeddings)
|
37 |
-
question = "How do I make a space public?"
|
38 |
-
searchDocs = self.db.similarity_search(question)
|
39 |
-
print(searchDocs[0].page_content)
|
40 |
|
41 |
def retrieve_qa_chain(self) -> None:
|
42 |
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
@@ -58,4 +54,5 @@ class ConfluenceQA:
|
|
58 |
|
59 |
def qa_bot(self, query:str):
|
60 |
result = self.qa.run(query)
|
|
|
61 |
return result
|
|
|
1 |
from langchain.document_loaders import ConfluenceLoader
|
2 |
from langchain.text_splitter import CharacterTextSplitter, TokenTextSplitter,RecursiveCharacterTextSplitter,SentenceTransformersTokenTextSplitter
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,pipeline,T5Tokenizer,T5ForConditionalGeneration
|
4 |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
5 |
from langchain.prompts import PromptTemplate
|
6 |
from langchain.chains import RetrievalQA
|
|
|
12 |
self.embeddings = HuggingFaceEmbeddings(model_name="multi-qa-MiniLM-L6-cos-v1")
|
13 |
|
14 |
def define_model(self) -> None:
|
15 |
+
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
|
16 |
+
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
|
17 |
+
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
18 |
+
self.llm = HuggingFacePipeline(pipeline = pipe,model_kwargs={"temperature": 0.5})
|
|
|
|
|
|
|
19 |
|
20 |
def store_in_vector_db(self) -> None:
|
21 |
persist_directory = self.config.get("persist_directory",None)
|
|
|
28 |
url=confluence_url, username=username, api_key=api_key
|
29 |
)
|
30 |
documents = loader.load(include_attachments=include_attachment, limit=100, space_key=space_key)
|
31 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=10)
|
32 |
documents = text_splitter.split_documents(documents)
|
33 |
self.db = Chroma.from_documents(documents, self.embeddings)
|
34 |
+
# question = "How do I make a space public?"
|
35 |
+
# searchDocs = self.db.similarity_search(question)
|
|
|
36 |
|
37 |
def retrieve_qa_chain(self) -> None:
|
38 |
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
|
|
54 |
|
55 |
def qa_bot(self, query:str):
|
56 |
result = self.qa.run(query)
|
57 |
+
print(result)
|
58 |
return result
|