Spaces:
Runtime error
Runtime error
gkrthk
commited on
Commit
•
fb5c9b9
1
Parent(s):
4583ba5
fix
Browse files- confluence_qa.py +5 -12
confluence_qa.py
CHANGED
@@ -12,12 +12,12 @@ class ConfluenceQA:
|
|
12 |
self.embeddings = HuggingFaceEmbeddings(model_name="multi-qa-MiniLM-L6-cos-v1")
|
13 |
|
14 |
def define_model(self) -> None:
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
|
19 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
|
20 |
-
pipe = pipeline("
|
21 |
self.llm = HuggingFacePipeline(pipeline = pipe,model_kwargs={"temperature": 0})
|
22 |
|
23 |
def store_in_vector_db(self) -> None:
|
@@ -33,13 +33,6 @@ class ConfluenceQA:
|
|
33 |
documents = loader.load(include_attachments=include_attachment, limit=100, space_key=space_key)
|
34 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
|
35 |
documents = text_splitter.split_documents(documents)
|
36 |
-
# text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
37 |
-
# documents = text_splitter.split_documents(documents)
|
38 |
-
# text_splitter = SentenceTransformersTokenTextSplitter(chunk_overlap=10)
|
39 |
-
# documents = text_splitter.split_documents(documents)
|
40 |
-
# print(documents)
|
41 |
-
# text_splitter = TokenTextSplitter(chunk_size=1000, chunk_overlap=10, encoding_name="cl100k_base") # This the encoding for text-embedding-ada-002
|
42 |
-
# documents = text_splitter.split_documents(documents)
|
43 |
self.db = Chroma.from_documents(documents, self.embeddings)
|
44 |
question = "How do I make a space public?"
|
45 |
searchDocs = self.db.similarity_search(question)
|
|
|
12 |
self.embeddings = HuggingFaceEmbeddings(model_name="multi-qa-MiniLM-L6-cos-v1")
|
13 |
|
14 |
def define_model(self) -> None:
|
15 |
+
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased-distilled-squad')
|
16 |
+
model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased-distilled-squad')
|
17 |
|
18 |
+
# tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
|
19 |
+
# model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
|
20 |
+
pipe = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
21 |
self.llm = HuggingFacePipeline(pipeline = pipe,model_kwargs={"temperature": 0})
|
22 |
|
23 |
def store_in_vector_db(self) -> None:
|
|
|
33 |
documents = loader.load(include_attachments=include_attachment, limit=100, space_key=space_key)
|
34 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150)
|
35 |
documents = text_splitter.split_documents(documents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
self.db = Chroma.from_documents(documents, self.embeddings)
|
37 |
question = "How do I make a space public?"
|
38 |
searchDocs = self.db.similarity_search(question)
|