Spaces:
Sleeping
Sleeping
from src.search import GeneticSearch | |
from src.hw_nats_fast_interface import HW_NATS_FastInterface | |
from src.utils import DEVICES, union_of_dicts | |
import numpy as np | |
import argparse | |
import json | |
def parse_args()->object: | |
"""Args function. | |
Returns: | |
(object): args parser | |
""" | |
parser = argparse.ArgumentParser() | |
# this selects the dataset to be considered for the search | |
parser.add_argument( | |
"--dataset", | |
default="cifar10", | |
type=str, | |
help="Dataset to be considered. One in ['cifar10', 'cifar100', 'ImageNet16-120'].s", | |
choices=["cifar10", "cifar100", "ImageNet16-120"] | |
) | |
# this selects the target device to be considered for the search | |
parser.add_argument( | |
"--device", | |
default="edgegpu", | |
type=str, | |
help="Device to be considered. One in ['edgegpu', 'eyeriss', 'fpga'].", | |
choices=["edgegpu", "eyeriss", "fpga"] | |
) | |
# when this flag is triggered, the search is hardware-agnostic (penalized with FLOPS and params) | |
parser.add_argument("--device-agnostic", action="store_true", help="Flag to trigger hardware-agnostic search.") | |
parser.add_argument("--n-generations", default=50, type=int, help="Number of generations to let the genetic algorithm run.") | |
parser.add_argument("--n-runs", default=30, type=int, help="Number of runs used to compute the average test accuracy.") | |
parser.add_argument("--performance-weight", default=0.65, type=float, help="Weight of the performance metric in the fitness function.") | |
parser.add_argument("--hardware-weight", default=0.35, type=float, help="Weight of the hardware metric in the fitness function.") | |
return parser.parse_args() | |
def main(): | |
# parse arguments | |
args = parse_args() | |
dataset = args.dataset | |
device = args.device if args.device in DEVICES else None | |
n_generations = args.n_generations | |
n_runs = args.n_runs | |
performance_weight, hardware_weight = args.performance_weight, args.hardware_weight | |
if performance_weight + hardware_weight > 1.0 + 1e-6: | |
error_msg = f""" | |
Performance weight: {performance_weight}, Hardware weight: {hardware_weight} (they sum up to {performance_weight + hardware_weight}). | |
The sum of the weights must be less than 1. | |
""" | |
raise ValueError(error_msg) | |
nebulos_chunks = [] | |
for i in range(4): # the number of chunks is 4 in this case | |
with open(f"data/nebuloss_{i+1}.json", "r") as f: | |
nebulos_chunks.append(json.load(f)) | |
searchspace_dict = union_of_dicts(nebulos_chunks) | |
# initialize the search space given dataset and device | |
searchspace_interface = HW_NATS_FastInterface(datapath=searchspace_dict, device=args.device, dataset=args.dataset) | |
search = GeneticSearch( | |
searchspace=searchspace_interface, | |
fitness_weights=np.array([performance_weight, hardware_weight]) | |
) | |
# this perform the actual architecture search | |
results = search.solve(max_generations=n_generations) | |
print(f'{dataset}-{device.upper() if device is not None else device}') | |
print(results[0].genotype, results[0].genotype_to_idx["/".join(results[0].genotype)], results[1]) | |
print() | |
if __name__=="__main__": | |
main() | |