NebulOS / nas.py
fracapuano
add files via upload
81a5d0a
from src.search import GeneticSearch
from src.hw_nats_fast_interface import HW_NATS_FastInterface
from src.utils import DEVICES, union_of_dicts
import numpy as np
import argparse
import json
def parse_args()->object:
"""Args function.
Returns:
(object): args parser
"""
parser = argparse.ArgumentParser()
# this selects the dataset to be considered for the search
parser.add_argument(
"--dataset",
default="cifar10",
type=str,
help="Dataset to be considered. One in ['cifar10', 'cifar100', 'ImageNet16-120'].s",
choices=["cifar10", "cifar100", "ImageNet16-120"]
)
# this selects the target device to be considered for the search
parser.add_argument(
"--device",
default="edgegpu",
type=str,
help="Device to be considered. One in ['edgegpu', 'eyeriss', 'fpga'].",
choices=["edgegpu", "eyeriss", "fpga"]
)
# when this flag is triggered, the search is hardware-agnostic (penalized with FLOPS and params)
parser.add_argument("--device-agnostic", action="store_true", help="Flag to trigger hardware-agnostic search.")
parser.add_argument("--n-generations", default=50, type=int, help="Number of generations to let the genetic algorithm run.")
parser.add_argument("--n-runs", default=30, type=int, help="Number of runs used to compute the average test accuracy.")
parser.add_argument("--performance-weight", default=0.65, type=float, help="Weight of the performance metric in the fitness function.")
parser.add_argument("--hardware-weight", default=0.35, type=float, help="Weight of the hardware metric in the fitness function.")
return parser.parse_args()
def main():
# parse arguments
args = parse_args()
dataset = args.dataset
device = args.device if args.device in DEVICES else None
n_generations = args.n_generations
n_runs = args.n_runs
performance_weight, hardware_weight = args.performance_weight, args.hardware_weight
if performance_weight + hardware_weight > 1.0 + 1e-6:
error_msg = f"""
Performance weight: {performance_weight}, Hardware weight: {hardware_weight} (they sum up to {performance_weight + hardware_weight}).
The sum of the weights must be less than 1.
"""
raise ValueError(error_msg)
nebulos_chunks = []
for i in range(4): # the number of chunks is 4 in this case
with open(f"data/nebuloss_{i+1}.json", "r") as f:
nebulos_chunks.append(json.load(f))
searchspace_dict = union_of_dicts(nebulos_chunks)
# initialize the search space given dataset and device
searchspace_interface = HW_NATS_FastInterface(datapath=searchspace_dict, device=args.device, dataset=args.dataset)
search = GeneticSearch(
searchspace=searchspace_interface,
fitness_weights=np.array([performance_weight, hardware_weight])
)
# this perform the actual architecture search
results = search.solve(max_generations=n_generations)
print(f'{dataset}-{device.upper() if device is not None else device}')
print(results[0].genotype, results[0].genotype_to_idx["/".join(results[0].genotype)], results[1])
print()
if __name__=="__main__":
main()