File size: 10,531 Bytes
32531dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import cv2
import numpy as np
from PIL import Image
import pytesseract
import gradio as gr
from pdf2image import convert_from_path
import PyPDF2
from llama_index.core import VectorStoreIndex, Document
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core import get_response_synthesizer
from dotenv import load_dotenv
from sentence_transformers import SentenceTransformer, util
import logging
from openai_tts_tool import generate_audio_and_text  # Importing from openai_tts_tool

# Set up logging configuration
logging.basicConfig(level=logging.INFO, format='%(asctime)s | %(levelname)s | %(message)s')

# Load environment variables from .env file
load_dotenv()

# Initialize global variables
vector_index = None
query_log = []
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')

langs = os.popen('tesseract --list-langs').read().split('\n')[1:-1]

# Preprocessing function
def preprocess_image(image_path):
    img = cv2.imread(image_path)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray = cv2.equalizeHist(gray)
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    processed_image = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                            cv2.THRESH_BINARY, 11, 2)
    temp_filename = "processed_image.png"
    cv2.imwrite(temp_filename, processed_image)
    return temp_filename

# Function to extract text from images
def extract_text_from_image(image_path, lang='eng'):
    processed_image_path = preprocess_image(image_path)
    text = pytesseract.image_to_string(Image.open(processed_image_path), lang=lang)
    return text

# Function to extract text from PDFs
def extract_text_from_pdf(pdf_path, lang='eng'):
    text = ""
    try:
        with open(pdf_path, 'rb') as file:
            pdf_reader = PyPDF2.PdfReader(file)
            for page_num in range(len(pdf_reader.pages)):
                page = pdf_reader.pages[page_num]
                page_text = page.extract_text()
                if page_text.strip():
                    text += page_text
                else:
                    images = convert_from_path(pdf_path, first_page=page_num + 1, last_page=page_num + 1)
                    for image in images:
                        image.save('temp_image.png', 'PNG')
                        text += extract_text_from_image('temp_image.png', lang=lang)
                        text += f"\n[OCR applied on page {page_num + 1}]\n"
    except Exception as e:
        return f"Error processing PDF: {str(e)}"
    return text

# General function to handle different file types
def extract_text(file_path, lang='eng'):
    file_ext = file_path.lower().split('.')[-1]
    if file_ext in ['pdf']:
        return extract_text_from_pdf(file_path, lang)
    elif file_ext in ['png', 'jpg', 'jpeg']:
        return extract_text_from_image(file_path, lang)
    else:
        return f"Unsupported file type: {file_ext}"

# Process uploaded documents and index them
def process_upload(api_key, files, lang):
    global vector_index

    if not api_key:
        return "Please provide a valid OpenAI API Key.", None

    if not files:
        return "No files uploaded.", None

    documents = []
    error_messages = []
    image_heavy_docs = []

    for file_path in files:
        try:
            text = extract_text(file_path, lang)
            if "This document consists of" in text and "page(s) of images" in text:
                image_heavy_docs.append(os.path.basename(file_path))
            documents.append(Document(text=text))
        except Exception as e:
            error_message = f"Error processing file {file_path}: {str(e)}"
            logging.error(error_message)
            error_messages.append(error_message)

    if documents:
        try:
            embed_model = OpenAIEmbedding(model="text-embedding-3-large", api_key=api_key)
            vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
            
            success_message = f"Successfully indexed {len(documents)} files."
            if image_heavy_docs:
                success_message += f"\nNote: The following documents consist mainly of images and may require manual review: {', '.join(image_heavy_docs)}"
            if error_messages:
                success_message += f"\nErrors: {'; '.join(error_messages)}"
            
            return success_message, vector_index
        except Exception as e:
            return f"Error creating index: {str(e)}", None
    else:
        return f"No valid documents were indexed. Errors: {'; '.join(error_messages)}", None

# Function to calculate similarity
def calculate_similarity(response, ground_truth):
    response_embedding = sentence_model.encode(response, convert_to_tensor=True)
    truth_embedding = sentence_model.encode(ground_truth, convert_to_tensor=True)

    response_embedding = response_embedding / np.linalg.norm(response_embedding)
    truth_embedding = truth_embedding / np.linalg.norm(truth_embedding)

    similarity = np.dot(response_embedding, truth_embedding)
    similarity_percentage = (similarity + 1) / 2 * 100

    return similarity_percentage

# Function to query documents
def query_app(query, model_name, use_similarity_check, openai_api_key):
    global vector_index, query_log

    if vector_index is None:
        logging.error("No documents indexed yet. Please upload documents first.")
        return "No documents indexed yet. Please upload documents first.", None

    if not openai_api_key:
        logging.error("No OpenAI API Key provided.")
        return "Please provide a valid OpenAI API Key.", None

    try:
        llm = OpenAI(model=model_name, api_key=openai_api_key)
    except Exception as e:
        logging.error(f"Error initializing the OpenAI model: {e}")
        return f"Error initializing the OpenAI model: {e}", None

    response_synthesizer = get_response_synthesizer(llm=llm)
    query_engine = vector_index.as_query_engine(llm=llm, response_synthesizer=response_synthesizer)

    try:
        response = query_engine.query(query)
    except Exception as e:
        logging.error(f"Error during query processing: {e}")
        return f"Error during query processing: {e}", None

    generated_response = response.response
    query_log.append({
        "query_id": str(len(query_log) + 1),
        "query": query,
        "gt_answer": "Placeholder ground truth answer",
        "response": generated_response,
        "retrieved_context": [{"text": doc.text} for doc in response.source_nodes]
    })

    metrics = {}

    if use_similarity_check:
        try:
            logging.info("Similarity check is enabled. Calculating similarity.")
            similarity = calculate_similarity(generated_response, "Placeholder ground truth answer")
            metrics['similarity'] = similarity
            logging.info(f"Similarity calculated: {similarity}")
        except Exception as e:
            logging.error(f"Error during similarity calculation: {e}")
            metrics['error'] = f"Error during similarity calculation: {e}"

    return generated_response, metrics if use_similarity_check else None

# Function to generate audio and text (integrating from openai_tts_tool.py)
def process_tts(api_key, input_text, model_name, voice_type, voice_speed, language, output_option, summary_length, additional_prompt):
    try:
        return generate_audio_and_text(api_key, input_text, model_name, voice_type, voice_speed, language, output_option, summary_length, additional_prompt)
    except Exception as e:
        logging.error(f"Error during TTS generation: {e}")
        return f"Error during TTS generation: {e}", None

# Main function with Gradio interface
def main():
    with gr.Blocks(title="Document Processing and TTS App") as demo:
        gr.Markdown("# πŸ“„ Document Processing, Text & Audio Generation App")

        # Upload documents and chat functionality
        with gr.Tab("πŸ“€ Upload Documents"):
            api_key_input = gr.Textbox(label="Enter OpenAI API Key", placeholder="Paste your OpenAI API Key here")
            file_upload = gr.File(label="Upload Files", file_count="multiple", type="filepath")
            lang_dropdown = gr.Dropdown(choices=langs, label="Select OCR Language", value='eng')
            upload_button = gr.Button("Upload and Index")
            upload_status = gr.Textbox(label="Status", interactive=False)
            upload_button.click(fn=process_upload, inputs=[api_key_input, file_upload, lang_dropdown], outputs=[upload_status])

        # Chat with document
        with gr.Tab("❓ Ask a Question"):
            query_input = gr.Textbox(label="Enter your question")
            model_dropdown = gr.Dropdown(choices=["gpt-4o", "gpt-4o-mini"], label="Select Model", value="gpt-4o")
            similarity_checkbox = gr.Checkbox(label="Use Similarity Check", value=False)
            query_button = gr.Button("Ask")
            answer_output = gr.Textbox(label="Answer", interactive=False)
            metrics_output = gr.JSON(label="Metrics")
            query_button.click(fn=query_app, inputs=[query_input, model_dropdown, similarity_checkbox, api_key_input], outputs=[answer_output, metrics_output])

        # Text-to-Speech generation
        with gr.Tab("πŸ—£οΈ Generate Audio and Text"):
            text_input = gr.Textbox(label="Enter text for generation")
            voice_type = gr.Dropdown(choices=["alloy", "echo", "fable", "onyx"], label="Voice Type", value="alloy")
            voice_speed = gr.Dropdown(choices=["normal", "slow", "fast"], label="Voice Speed", value="normal")
            language = gr.Dropdown(choices=["en", "ar", "de", "hi"], label="Language", value="en")
            output_option = gr.Radio(choices=["audio", "summary_text", "both"], label="Output Option", value="both")
            summary_length = gr.Number(label="Summary Length", value=100)
            additional_prompt = gr.Textbox(label="Additional Prompt (Optional)")
            generate_button = gr.Button("Generate")
            audio_output = gr.Audio(label="Generated Audio", interactive=False)
            summary_output = gr.Textbox(label="Generated Summary Text", interactive=False)

            generate_button.click(fn=process_tts, inputs=[api_key_input, text_input, model_dropdown, voice_type, voice_speed, language, output_option, summary_length, additional_prompt], outputs=[audio_output, summary_output])

    demo.launch()

if __name__ == "__main__":
    main()