Spaces:
Sleeping
Sleeping
capradeepgujaran
commited on
Commit
β’
32531dc
1
Parent(s):
1ded6a7
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import pytesseract
|
6 |
+
import gradio as gr
|
7 |
+
from pdf2image import convert_from_path
|
8 |
+
import PyPDF2
|
9 |
+
from llama_index.core import VectorStoreIndex, Document
|
10 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
11 |
+
from llama_index.llms.openai import OpenAI
|
12 |
+
from llama_index.core import get_response_synthesizer
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
from sentence_transformers import SentenceTransformer, util
|
15 |
+
import logging
|
16 |
+
from openai_tts_tool import generate_audio_and_text # Importing from openai_tts_tool
|
17 |
+
|
18 |
+
# Set up logging configuration
|
19 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s | %(levelname)s | %(message)s')
|
20 |
+
|
21 |
+
# Load environment variables from .env file
|
22 |
+
load_dotenv()
|
23 |
+
|
24 |
+
# Initialize global variables
|
25 |
+
vector_index = None
|
26 |
+
query_log = []
|
27 |
+
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
28 |
+
|
29 |
+
langs = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
|
30 |
+
|
31 |
+
# Preprocessing function
|
32 |
+
def preprocess_image(image_path):
|
33 |
+
img = cv2.imread(image_path)
|
34 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
35 |
+
gray = cv2.equalizeHist(gray)
|
36 |
+
gray = cv2.GaussianBlur(gray, (5, 5), 0)
|
37 |
+
processed_image = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
38 |
+
cv2.THRESH_BINARY, 11, 2)
|
39 |
+
temp_filename = "processed_image.png"
|
40 |
+
cv2.imwrite(temp_filename, processed_image)
|
41 |
+
return temp_filename
|
42 |
+
|
43 |
+
# Function to extract text from images
|
44 |
+
def extract_text_from_image(image_path, lang='eng'):
|
45 |
+
processed_image_path = preprocess_image(image_path)
|
46 |
+
text = pytesseract.image_to_string(Image.open(processed_image_path), lang=lang)
|
47 |
+
return text
|
48 |
+
|
49 |
+
# Function to extract text from PDFs
|
50 |
+
def extract_text_from_pdf(pdf_path, lang='eng'):
|
51 |
+
text = ""
|
52 |
+
try:
|
53 |
+
with open(pdf_path, 'rb') as file:
|
54 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
55 |
+
for page_num in range(len(pdf_reader.pages)):
|
56 |
+
page = pdf_reader.pages[page_num]
|
57 |
+
page_text = page.extract_text()
|
58 |
+
if page_text.strip():
|
59 |
+
text += page_text
|
60 |
+
else:
|
61 |
+
images = convert_from_path(pdf_path, first_page=page_num + 1, last_page=page_num + 1)
|
62 |
+
for image in images:
|
63 |
+
image.save('temp_image.png', 'PNG')
|
64 |
+
text += extract_text_from_image('temp_image.png', lang=lang)
|
65 |
+
text += f"\n[OCR applied on page {page_num + 1}]\n"
|
66 |
+
except Exception as e:
|
67 |
+
return f"Error processing PDF: {str(e)}"
|
68 |
+
return text
|
69 |
+
|
70 |
+
# General function to handle different file types
|
71 |
+
def extract_text(file_path, lang='eng'):
|
72 |
+
file_ext = file_path.lower().split('.')[-1]
|
73 |
+
if file_ext in ['pdf']:
|
74 |
+
return extract_text_from_pdf(file_path, lang)
|
75 |
+
elif file_ext in ['png', 'jpg', 'jpeg']:
|
76 |
+
return extract_text_from_image(file_path, lang)
|
77 |
+
else:
|
78 |
+
return f"Unsupported file type: {file_ext}"
|
79 |
+
|
80 |
+
# Process uploaded documents and index them
|
81 |
+
def process_upload(api_key, files, lang):
|
82 |
+
global vector_index
|
83 |
+
|
84 |
+
if not api_key:
|
85 |
+
return "Please provide a valid OpenAI API Key.", None
|
86 |
+
|
87 |
+
if not files:
|
88 |
+
return "No files uploaded.", None
|
89 |
+
|
90 |
+
documents = []
|
91 |
+
error_messages = []
|
92 |
+
image_heavy_docs = []
|
93 |
+
|
94 |
+
for file_path in files:
|
95 |
+
try:
|
96 |
+
text = extract_text(file_path, lang)
|
97 |
+
if "This document consists of" in text and "page(s) of images" in text:
|
98 |
+
image_heavy_docs.append(os.path.basename(file_path))
|
99 |
+
documents.append(Document(text=text))
|
100 |
+
except Exception as e:
|
101 |
+
error_message = f"Error processing file {file_path}: {str(e)}"
|
102 |
+
logging.error(error_message)
|
103 |
+
error_messages.append(error_message)
|
104 |
+
|
105 |
+
if documents:
|
106 |
+
try:
|
107 |
+
embed_model = OpenAIEmbedding(model="text-embedding-3-large", api_key=api_key)
|
108 |
+
vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
|
109 |
+
|
110 |
+
success_message = f"Successfully indexed {len(documents)} files."
|
111 |
+
if image_heavy_docs:
|
112 |
+
success_message += f"\nNote: The following documents consist mainly of images and may require manual review: {', '.join(image_heavy_docs)}"
|
113 |
+
if error_messages:
|
114 |
+
success_message += f"\nErrors: {'; '.join(error_messages)}"
|
115 |
+
|
116 |
+
return success_message, vector_index
|
117 |
+
except Exception as e:
|
118 |
+
return f"Error creating index: {str(e)}", None
|
119 |
+
else:
|
120 |
+
return f"No valid documents were indexed. Errors: {'; '.join(error_messages)}", None
|
121 |
+
|
122 |
+
# Function to calculate similarity
|
123 |
+
def calculate_similarity(response, ground_truth):
|
124 |
+
response_embedding = sentence_model.encode(response, convert_to_tensor=True)
|
125 |
+
truth_embedding = sentence_model.encode(ground_truth, convert_to_tensor=True)
|
126 |
+
|
127 |
+
response_embedding = response_embedding / np.linalg.norm(response_embedding)
|
128 |
+
truth_embedding = truth_embedding / np.linalg.norm(truth_embedding)
|
129 |
+
|
130 |
+
similarity = np.dot(response_embedding, truth_embedding)
|
131 |
+
similarity_percentage = (similarity + 1) / 2 * 100
|
132 |
+
|
133 |
+
return similarity_percentage
|
134 |
+
|
135 |
+
# Function to query documents
|
136 |
+
def query_app(query, model_name, use_similarity_check, openai_api_key):
|
137 |
+
global vector_index, query_log
|
138 |
+
|
139 |
+
if vector_index is None:
|
140 |
+
logging.error("No documents indexed yet. Please upload documents first.")
|
141 |
+
return "No documents indexed yet. Please upload documents first.", None
|
142 |
+
|
143 |
+
if not openai_api_key:
|
144 |
+
logging.error("No OpenAI API Key provided.")
|
145 |
+
return "Please provide a valid OpenAI API Key.", None
|
146 |
+
|
147 |
+
try:
|
148 |
+
llm = OpenAI(model=model_name, api_key=openai_api_key)
|
149 |
+
except Exception as e:
|
150 |
+
logging.error(f"Error initializing the OpenAI model: {e}")
|
151 |
+
return f"Error initializing the OpenAI model: {e}", None
|
152 |
+
|
153 |
+
response_synthesizer = get_response_synthesizer(llm=llm)
|
154 |
+
query_engine = vector_index.as_query_engine(llm=llm, response_synthesizer=response_synthesizer)
|
155 |
+
|
156 |
+
try:
|
157 |
+
response = query_engine.query(query)
|
158 |
+
except Exception as e:
|
159 |
+
logging.error(f"Error during query processing: {e}")
|
160 |
+
return f"Error during query processing: {e}", None
|
161 |
+
|
162 |
+
generated_response = response.response
|
163 |
+
query_log.append({
|
164 |
+
"query_id": str(len(query_log) + 1),
|
165 |
+
"query": query,
|
166 |
+
"gt_answer": "Placeholder ground truth answer",
|
167 |
+
"response": generated_response,
|
168 |
+
"retrieved_context": [{"text": doc.text} for doc in response.source_nodes]
|
169 |
+
})
|
170 |
+
|
171 |
+
metrics = {}
|
172 |
+
|
173 |
+
if use_similarity_check:
|
174 |
+
try:
|
175 |
+
logging.info("Similarity check is enabled. Calculating similarity.")
|
176 |
+
similarity = calculate_similarity(generated_response, "Placeholder ground truth answer")
|
177 |
+
metrics['similarity'] = similarity
|
178 |
+
logging.info(f"Similarity calculated: {similarity}")
|
179 |
+
except Exception as e:
|
180 |
+
logging.error(f"Error during similarity calculation: {e}")
|
181 |
+
metrics['error'] = f"Error during similarity calculation: {e}"
|
182 |
+
|
183 |
+
return generated_response, metrics if use_similarity_check else None
|
184 |
+
|
185 |
+
# Function to generate audio and text (integrating from openai_tts_tool.py)
|
186 |
+
def process_tts(api_key, input_text, model_name, voice_type, voice_speed, language, output_option, summary_length, additional_prompt):
|
187 |
+
try:
|
188 |
+
return generate_audio_and_text(api_key, input_text, model_name, voice_type, voice_speed, language, output_option, summary_length, additional_prompt)
|
189 |
+
except Exception as e:
|
190 |
+
logging.error(f"Error during TTS generation: {e}")
|
191 |
+
return f"Error during TTS generation: {e}", None
|
192 |
+
|
193 |
+
# Main function with Gradio interface
|
194 |
+
def main():
|
195 |
+
with gr.Blocks(title="Document Processing and TTS App") as demo:
|
196 |
+
gr.Markdown("# π Document Processing, Text & Audio Generation App")
|
197 |
+
|
198 |
+
# Upload documents and chat functionality
|
199 |
+
with gr.Tab("π€ Upload Documents"):
|
200 |
+
api_key_input = gr.Textbox(label="Enter OpenAI API Key", placeholder="Paste your OpenAI API Key here")
|
201 |
+
file_upload = gr.File(label="Upload Files", file_count="multiple", type="filepath")
|
202 |
+
lang_dropdown = gr.Dropdown(choices=langs, label="Select OCR Language", value='eng')
|
203 |
+
upload_button = gr.Button("Upload and Index")
|
204 |
+
upload_status = gr.Textbox(label="Status", interactive=False)
|
205 |
+
upload_button.click(fn=process_upload, inputs=[api_key_input, file_upload, lang_dropdown], outputs=[upload_status])
|
206 |
+
|
207 |
+
# Chat with document
|
208 |
+
with gr.Tab("β Ask a Question"):
|
209 |
+
query_input = gr.Textbox(label="Enter your question")
|
210 |
+
model_dropdown = gr.Dropdown(choices=["gpt-4o", "gpt-4o-mini"], label="Select Model", value="gpt-4o")
|
211 |
+
similarity_checkbox = gr.Checkbox(label="Use Similarity Check", value=False)
|
212 |
+
query_button = gr.Button("Ask")
|
213 |
+
answer_output = gr.Textbox(label="Answer", interactive=False)
|
214 |
+
metrics_output = gr.JSON(label="Metrics")
|
215 |
+
query_button.click(fn=query_app, inputs=[query_input, model_dropdown, similarity_checkbox, api_key_input], outputs=[answer_output, metrics_output])
|
216 |
+
|
217 |
+
# Text-to-Speech generation
|
218 |
+
with gr.Tab("π£οΈ Generate Audio and Text"):
|
219 |
+
text_input = gr.Textbox(label="Enter text for generation")
|
220 |
+
voice_type = gr.Dropdown(choices=["alloy", "echo", "fable", "onyx"], label="Voice Type", value="alloy")
|
221 |
+
voice_speed = gr.Dropdown(choices=["normal", "slow", "fast"], label="Voice Speed", value="normal")
|
222 |
+
language = gr.Dropdown(choices=["en", "ar", "de", "hi"], label="Language", value="en")
|
223 |
+
output_option = gr.Radio(choices=["audio", "summary_text", "both"], label="Output Option", value="both")
|
224 |
+
summary_length = gr.Number(label="Summary Length", value=100)
|
225 |
+
additional_prompt = gr.Textbox(label="Additional Prompt (Optional)")
|
226 |
+
generate_button = gr.Button("Generate")
|
227 |
+
audio_output = gr.Audio(label="Generated Audio", interactive=False)
|
228 |
+
summary_output = gr.Textbox(label="Generated Summary Text", interactive=False)
|
229 |
+
|
230 |
+
generate_button.click(fn=process_tts, inputs=[api_key_input, text_input, model_dropdown, voice_type, voice_speed, language, output_option, summary_length, additional_prompt], outputs=[audio_output, summary_output])
|
231 |
+
|
232 |
+
demo.launch()
|
233 |
+
|
234 |
+
if __name__ == "__main__":
|
235 |
+
main()
|