Spaces:
Running
Running
File size: 19,877 Bytes
304227c cdff6ef 304227c c558e5e 304227c 819f191 67c562d 304227c 67c562d 2ef2957 67c562d 2ef2957 67c562d 2ef2957 67c562d 2ef2957 67c562d 2ef2957 5c2e616 67c562d 304227c 67c562d 304227c 67c562d 304227c 67c562d 304227c 67c562d 3331389 304227c 67c562d 304227c 67c562d 304227c 3331389 304227c d7bcf16 304227c 67c562d 304227c 67c562d 304227c 7d01b03 ba4c717 b7b0541 74b54dc 67cc8f7 74b54dc 8466322 74b54dc 8466322 74b54dc 728617c 68390b1 74b54dc b7b0541 74b54dc 8466322 2368bc1 8466322 10b7857 2368bc1 e4751b9 2368bc1 b9fe14f 8466322 67ce09a 7babd14 831f27f 67ce09a 7babd14 831f27f 67ce09a 7babd14 831f27f b9fe14f 8466322 f523673 8466322 6a09772 f523673 5718f8b f523673 d18c0fc 8466322 f523673 8466322 f523673 8466322 f523673 8466322 dfc2e38 8466322 dfc2e38 68390b1 7d01b03 fdd8513 7a00ff5 ded4b1a fdd8513 681acf9 fdd8513 fa7f1bf fdd8513 56b7326 fdd8513 ce3457b 5cd142a fdd8513 5cd142a fdd8513 56b7326 fdd8513 90b6b23 30c6ca6 b97dc07 56e3500 681acf9 56e3500 f4d250c 5310c27 f4d250c 56e3500 681acf9 74dc002 d5e9f89 30c6ca6 68390b1 4f7cecf 8be0ef5 8466322 8be0ef5 04894b7 8be0ef5 4f7cecf 7d01b03 28bf1be 779db5f 6c37a5f af170a6 4f7cecf 5cd142a 304227c b0edfa1 304227c b0edfa1 304227c 3331389 304227c 561b6c3 3331389 eb36747 e69ee39 eb36747 8be0ef5 2cc4b9a 522b9dd 8be0ef5 522b9dd 8be0ef5 522b9dd 2cc4b9a 522b9dd 2cc4b9a 522b9dd 2cc4b9a 8be0ef5 e69ee39 304227c eb36747 304227c 3331389 45b4425 2db28ae 3331389 2db28ae 03261c8 c558e5e 304227c c2dc7f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import os
import json
import re
from huggingface_hub import InferenceClient
import gradio as gr
from pydantic import BaseModel, Field
from typing import Optional, Literal
from huggingface_hub.errors import HfHubHTTPError
class PromptInput(BaseModel):
text: str = Field(..., description="The initial prompt text")
meta_prompt_choice: Literal["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"] = Field(..., description="Choice of meta prompt strategy")
class RefinementOutput(BaseModel):
query_analysis: Optional[str] = None
initial_prompt_evaluation: Optional[str] = None
refined_prompt: Optional[str] = None
explanation_of_refinements: Optional[str] = None
raw_content: Optional[str] = None
class PromptRefiner:
def __init__(self, api_token: str):
self.client = InferenceClient(token=api_token, timeout=300)
self.meta_prompts = {
"morphosis": original_meta_prompt,
"verse": new_meta_prompt,
"physics": metaprompt1,
"bolism": loic_metaprompt,
"done": metadone,
"star": echo_prompt_refiner,
"math": math_meta_prompt,
"arpe": autoregressive_metaprompt
}
def refine_prompt(self, prompt_input: PromptInput) -> tuple:
try:
# Select meta prompt using dictionary instead of if-elif chain
selected_meta_prompt = self.meta_prompts.get(
prompt_input.meta_prompt_choice,
advanced_meta_prompt
)
messages = [
{
"role": "system",
"content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more detailed.'
},
{
"role": "user",
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt_input.text)
}
]
response = self.client.chat_completion(
model=prompt_refiner_model,
messages=messages,
max_tokens=2000,
temperature=0.8
)
response_content = response.choices[0].message.content.strip()
# Parse the response
result = self._parse_response(response_content)
return (
result.get('initial_prompt_evaluation', ''),
result.get('refined_prompt', ''),
result.get('explanation_of_refinements', ''),
result
)
except HfHubHTTPError as e:
return (
"Error: Model timeout. Please try again later.",
"",
"The selected model is currently experiencing high traffic.",
{}
)
except Exception as e:
return (
f"Error: {str(e)}",
"",
"An unexpected error occurred.",
{}
)
def _parse_response(self, response_content: str) -> dict:
try:
# Try to find JSON in response
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
if json_match:
json_str = json_match.group(1)
json_str = re.sub(r'\n\s*', ' ', json_str)
json_str = json_str.replace('"', '\\"')
json_output = json.loads(f'"{json_str}"')
if isinstance(json_output, str):
json_output = json.loads(json_output)
# Clean up JSON values
return {
key: value.replace('\\"', '"') if isinstance(value, str) else value
for key, value in json_output.items()
}
# Fallback to regex parsing if no JSON found
output = {}
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
match = re.search(pattern, response_content, re.DOTALL)
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"') if match else ""
return output
except (json.JSONDecodeError, ValueError) as e:
print(f"Error parsing response: {e}")
print(f"Raw content: {response_content}")
return {
"initial_prompt_evaluation": "Error parsing response",
"refined_prompt": "",
"explanation_of_refinements": str(e)
}
def apply_prompt(self, prompt: str, model: str) -> str:
try:
messages = [
{
"role": "system",
"content": "You are a helpful assistant. Answer in stylized version with latex format or markdown if relevant. Separate your answer into logical sections using level 2 headers (##) for sections and bolding (**) for subsections. Incorporate a variety of lists, headers, and text to make the answer visually appealing"
},
{
"role": "user",
"content": prompt
}
]
response = self.client.chat_completion(
model=model,
messages=messages,
max_tokens=2000,
temperature=0.8
)
output = response.choices[0].message.content.strip()
return output.replace('\n\n', '\n').strip()
except Exception as e:
return f"Error: {str(e)}"
class GradioInterface:
def __init__(self, prompt_refiner: PromptRefiner):
self.prompt_refiner = prompt_refiner
custom_css = """
.container {
border: 2px solid #2196F3;
border-radius: 10px;
padding: 12px;
margin: 6px;
background: white;
position: relative;
width: 100% !important;
max-width: 800px !important;
margin: 0 auto 20px auto !important;
}
.container::before {
position: absolute;
top: -10px;
left: 20px;
background: white;
padding: 0 10px;
color: #2196F3;
font-weight: bold;
font-size: 1.2em;
}
.container::after {
content: '' !important;
position: absolute !important;
top: 0 !important;
left: 0 !important;
right: 0 !important;
bottom: 0 !important;
background-image: url('your-image-url.jpg') !important;
background-size: cover !important;
background-position: center !important;
opacity: 0.05 !important;
z-index: -1 !important;
border-radius: 10px !important;
}
.title-container {
width: fit-content !important;
margin: 0 auto !important;
padding: 2px 40px !important;
border: 1px solid #0066cc !important;
border-radius: 10px !important;
background-color: rgba(0, 102, 204, 0.05) !important;
}
.title-container * {
text-align: center;
margin: 0 !important;
line-height: 1.2 !important;
}
.title-container h1 {
font-size: 28px !important;
margin-bottom: 1px !important;
}
.title-container h3 {
font-size: 18px !important;
margin-bottom: 1px !important;
}
.title-container p {
font-size: 14px !important;
margin-bottom: 1px !important;
}
.input-container::before {
content: 'PROMPT REFINEMENT';
}
.analysis-container::before {
content: 'ANALYSIS';
}
.model-container::before {
content: 'MODEL APPLICATION';
}
.examples-container::before {
content: 'EXAMPLES';
}
.container2 {
border: 1px solid #CBDCEB !important;
border-radius: 8px !important;
padding: 8px !important;
margin: 6px 0 !important;
background: white !important;
}
.input-container textarea {
height: 200px !important;
}
.no-background {
background: transparent !important;
}
/* Radio group styling */
.radio-group {
display: flex !important;
gap: 8px !important;
flex-wrap: wrap !important;
margin: 10px 0 !important;
}
.gradio-radio label {
padding: 6px 12px !important;
border: 1px solid #ddd !important;
border-radius: 4px !important;
cursor: pointer !important;
background: white !important;
}
.gradio-radio input[type="radio"]:checked + label {
background: #e3f2fd !important;
border-color: #2196F3 !important;
color: #2196F3 !important;
}
/* Textbox styling */
.gradio-textbox textarea {
border: 1px solid #ddd !important;
border-radius: 4px !important;
padding: 8px !important;
min-height: 100px !important;
}
/* Button styling */
.gradio-button {
background-color: #2196F3 !important;
color: white !important;
border-radius: 4px !important;
padding: 8px 16px !important;
margin: 10px 0 !important;
}
/* Accordion styling */
.gradio-accordion {
margin: 10px 0 !important;
border: none !important;
}
/* Fix container alignment */
.gradio-container {
display: flex !important;
flex-direction: column !important;
align-items: center !important;
width: 100% !important;
max-width: 800px !important;
margin: 0 auto !important;
}
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface:
with gr.Column(elem_classes=["container", "title-container"]):
gr.Markdown("# PROMPT++")
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
gr.Markdown("Learn how to generate an improved version of your prompts.")
with gr.Column(elem_classes=["container", "input-container"]):
prompt_text = gr.Textbox(
label="Type your prompt (or let it empty to see metaprompt)",
# elem_classes="no-background",
#elem_classes="container2",
lines=5
)
meta_prompt_choice = gr.Radio(
["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"],
label="Choose Meta Prompt",
value="star",
elem_classes=["no-background", "radio-group"]
# elem_classes=[ "radio-group"]
)
refine_button = gr.Button("Refine Prompt")
# Option 1: Put Examples here (before Meta Prompt explanation)
with gr.Row(elem_classes=["container2"]):
with gr.Accordion("Examples", open=False):
gr.Examples(
examples=[
["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "star"],
["Tell me about that guy who invented the light bulb", "physics"],
["Explain the universe.", "star"],
["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
["List American presidents.", "verse"],
["Explain why the experiment failed.", "morphosis"],
["Is nuclear energy good?", "verse"],
["How does a computer work?", "phor"],
["How to make money fast?", "done"],
["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],
],
inputs=[prompt_text, meta_prompt_choice]
)
with gr.Accordion("Meta Prompt explanation", open=False):
gr.Markdown(explanation_markdown)
# Option 2: Or put Examples here (after the button)
# with gr.Accordion("Examples", open=False):
# gr.Examples(...)
with gr.Column(elem_classes=["container", "analysis-container"]):
gr.Markdown(' ')
gr.Markdown("### Initial prompt analysis")
analysis_evaluation = gr.Markdown()
gr.Markdown("### Refined Prompt")
refined_prompt = gr.Textbox(
label="Refined Prompt",
interactive=False,
show_label=True, # Must be True for copy button to show
show_copy_button=True, # Adds the copy button
# elem_classes="no-background"
)
gr.Markdown("### Explanation of Refinements")
explanation_of_refinements = gr.Markdown()
with gr.Column(elem_classes=["container", "model-container"]):
# gr.Markdown("## See MetaPrompt Impact")
with gr.Row():
apply_model = gr.Dropdown(models,
value="meta-llama/Llama-3.1-8B-Instruct",
label="Choose the Model",
container=False, # This removes the container around the dropdown
scale=1, # Controls the width relative to other components
min_width=300 # Sets minimum width in pixels
# elem_classes="no-background"
)
apply_button = gr.Button("Apply MetaPrompt")
# with gr.Column(elem_classes=["container", "results-container"]):
gr.Markdown("### Prompts on choosen model")
with gr.Tabs():
with gr.TabItem("Original Prompt Output"):
original_output = gr.Markdown()
with gr.TabItem("Refined Prompt Output"):
refined_output = gr.Markdown()
with gr.Accordion("Full Response JSON", open=False, visible=True):
full_response_json = gr.JSON()
refine_button.click(
fn=self.refine_prompt,
inputs=[prompt_text, meta_prompt_choice],
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
)
apply_button.click(
fn=self.apply_prompts,
inputs=[prompt_text, refined_prompt, apply_model],
outputs=[original_output, refined_output]
)
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
# Since result is a tuple with 4 elements based on the return value of prompt_refiner.refine_prompt
initial_prompt_evaluation, refined_prompt, explanation_refinements, full_response = self.prompt_refiner.refine_prompt(input_data)
analysis_evaluation = f"\n\n{initial_prompt_evaluation}"
return (
analysis_evaluation,
refined_prompt,
explanation_refinements,
full_response
)
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
original_output = self.prompt_refiner.apply_prompt(original_prompt, model)
refined_output = self.prompt_refiner.apply_prompt(refined_prompt, model)
return original_output, refined_output
def launch(self, share=False):
self.interface.launch(share=share)
metaprompt_explanations = {
"star": "Use ECHO when you need a comprehensive, multi-stage approach for complex prompts. It's ideal for tasks requiring in-depth analysis, exploration of multiple alternatives, and synthesis of ideas. Choose this over others when you have time for a thorough refinement process and need to consider various aspects of the prompt.",
"done": "Opt for this when you want a structured approach with emphasis on role-playing and advanced techniques. It's particularly useful for tasks that benefit from diverse perspectives and complex reasoning. Prefer this over 'physics' when you need a more detailed, step-by-step refinement process.",
"physics": "Select this when you need a balance between structure and advanced techniques, with a focus on role-playing. It's similar to 'done' but may be more suitable for scientific or technical prompts. Choose this over 'done' for a slightly less complex approach.",
"morphosis": "Use this simplified approach for straightforward prompts or when time is limited. It focuses on essential improvements without complex techniques. Prefer this over other methods when you need quick, clear refinements without extensive analysis.",
"verse": "Choose this method when you need to analyze and improve a prompt's strengths and weaknesses, with a focus on information flow. It's particularly useful for enhancing the logical structure of prompts. Use this over 'morphosis' when you need more depth but less complexity than 'star'.",
"phor": "Employ this advanced approach when you need to combine multiple prompt engineering techniques. It's ideal for complex tasks requiring both clarity and sophisticated prompting methods. Select this over 'star' when you want a more flexible, technique-focused approach.",
"bolism": "Utilize this method when working with autoregressive language models and when the task requires careful reasoning before conclusions. It's best for prompts that need detailed output formatting. Choose this over others when the prompt's structure and reasoning order are crucial."
}
models = [
# Meta-Llama models (all support system)
"meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Meta-Llama-3-8B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-2-13b-chat-hf",
"meta-llama/Llama-2-7b-chat-hf",
# HuggingFaceH4 models (support system)
"HuggingFaceH4/zephyr-7b-beta",
"HuggingFaceH4/zephyr-7b-alpha",
# Qwen models (support system)
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-1.5B",
# Google models (supports system)
"google/gemma-1.1-2b-it"
]
explanation_markdown = "".join([f"- **{key}**: {value}\n" for key, value in metaprompt_explanations.items()])
if __name__ == '__main__':
meta_info=""
api_token = os.getenv('HF_API_TOKEN')
if not api_token:
raise ValueError("HF_API_TOKEN not found in environment variables")
metadone = os.getenv('metadone')
prompt_refiner_model = os.getenv('prompt_refiner_model')
echo_prompt_refiner = os.getenv('echo_prompt_refiner')
metaprompt1 = os.getenv('metaprompt1')
loic_metaprompt = os.getenv('loic_metaprompt')
openai_metaprompt = os.getenv('openai_metaprompt')
original_meta_prompt = os.getenv('original_meta_prompt')
new_meta_prompt = os.getenv('new_meta_prompt')
advanced_meta_prompt = os.getenv('advanced_meta_prompt')
math_meta_prompt = os.getenv('metamath')
autoregressive_metaprompt = os.getenv('autoregressive_metaprompt')
prompt_refiner = PromptRefiner(api_token)
gradio_interface = GradioInterface(prompt_refiner)
gradio_interface.launch(share=True) |