baconnier commited on
Commit
5cd142a
1 Parent(s): 56b7326

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -35
app.py CHANGED
@@ -266,25 +266,26 @@ input[type="radio"]:checked::after {
266
  refine_button = gr.Button("Refine Prompt")
267
 
268
  # Option 1: Put Examples here (before Meta Prompt explanation)
269
- with gr.Accordion("Examples", open=False):
270
- gr.Examples(
271
- examples=[
272
- ["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "star"],
273
- ["Tell me about that guy who invented the light bulb", "physics"],
274
- ["Explain the universe.", "star"],
275
- ["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
276
- ["List American presidents.", "verse"],
277
- ["Explain why the experiment failed.", "morphosis"],
278
- ["Is nuclear energy good?", "verse"],
279
- ["How does a computer work?", "phor"],
280
- ["How to make money fast?", "done"],
281
- ["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],
282
- ],
283
- inputs=[prompt_text, meta_prompt_choice]
284
- )
 
285
 
286
- with gr.Accordion("Meta Prompt explanation", open=False):
287
- gr.Markdown(explanation_markdown)
288
 
289
 
290
 
@@ -348,23 +349,7 @@ input[type="radio"]:checked::after {
348
  inputs=[prompt_text, refined_prompt, apply_model],
349
  outputs=[original_output, refined_output]
350
  )
351
- with gr.Column(elem_classes=["container", "examples-container"]):
352
- with gr.Accordion("Examples", open=False):
353
- gr.Examples(
354
- examples=[
355
- ["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "star"],
356
- ["Tell me about that guy who invented the light bulb", "physics"],
357
- ["Explain the universe.", "star"],
358
- ["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
359
- ["List American presidents.", "verse"],
360
- ["Explain why the experiment failed.", "morphosis"],
361
- ["Is nuclear energy good?", "verse"],
362
- ["How does a computer work?", "phor"],
363
- ["How to make money fast?", "done"],
364
- ["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],
365
- ],
366
- inputs=[prompt_text, meta_prompt_choice]
367
- )
368
  def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
369
  input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
370
  result = self.prompt_refiner.refine_prompt(input_data)
 
266
  refine_button = gr.Button("Refine Prompt")
267
 
268
  # Option 1: Put Examples here (before Meta Prompt explanation)
269
+ with gr.Column(elem_classes=["container", "examples-container"]):
270
+ with gr.Accordion("Examples", open=False):
271
+ gr.Examples(
272
+ examples=[
273
+ ["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "star"],
274
+ ["Tell me about that guy who invented the light bulb", "physics"],
275
+ ["Explain the universe.", "star"],
276
+ ["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
277
+ ["List American presidents.", "verse"],
278
+ ["Explain why the experiment failed.", "morphosis"],
279
+ ["Is nuclear energy good?", "verse"],
280
+ ["How does a computer work?", "phor"],
281
+ ["How to make money fast?", "done"],
282
+ ["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],
283
+ ],
284
+ inputs=[prompt_text, meta_prompt_choice]
285
+ )
286
 
287
+ with gr.Accordion("Meta Prompt explanation", open=False):
288
+ gr.Markdown(explanation_markdown)
289
 
290
 
291
 
 
349
  inputs=[prompt_text, refined_prompt, apply_model],
350
  outputs=[original_output, refined_output]
351
  )
352
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353
  def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
354
  input_data = PromptInput(text=prompt, meta_prompt_choice=meta_prompt_choice)
355
  result = self.prompt_refiner.refine_prompt(input_data)