File size: 5,965 Bytes
c5e4524
 
 
 
 
 
 
 
 
 
aa91fc5
1532bd6
a7fc504
c5e4524
 
 
 
 
 
 
 
 
bd9fae2
 
 
 
 
 
c5e4524
 
 
bd9fae2
c5e4524
 
 
 
 
bd9fae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5e4524
 
 
bd9fae2
c5e4524
 
 
 
bd9fae2
c5e4524
 
 
 
 
 
 
 
 
 
 
 
 
bd9fae2
c5e4524
 
 
 
bd9fae2
c5e4524
 
 
 
 
 
bd9fae2
c5e4524
 
 
 
 
 
 
 
 
bd9fae2
c5e4524
 
 
 
 
 
 
 
 
 
 
bd9fae2
c5e4524
 
 
 
 
 
 
 
 
bd9fae2
aa91fc5
 
2a6af36
aa91fc5
 
bd9fae2
 
 
 
 
aa91fc5
bd9fae2
a7fc504
 
 
 
 
bd9fae2
 
 
 
 
 
 
 
 
 
c5e4524
 
 
 
 
 
 
1a08523
 
 
 
 
 
 
c5e4524
 
1a08523
c5e4524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import json
import re

import openai
import pandas as pd
import requests
import spacy
import spacy_transformers
import streamlit_scrollable_textbox as stx
import torch
from InstructorEmbedding import INSTRUCTOR
from sentence_transformers import SentenceTransformer
from gradio_client import Client
from tqdm import tqdm
from transformers import (
    AutoModelForMaskedLM,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    T5ForConditionalGeneration,
    T5Tokenizer,
    pipeline,
)
from rank_bm25 import BM25Okapi, BM25L, BM25Plus
import numpy as np
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
import re
import streamlit as st


@st.cache_resource
def get_data():
    data = pd.read_csv("earnings_calls_cleaned_metadata.csv")
    return data


# Preprocessing for BM25


def tokenizer(
    string, reg="[a-zA-Z'-]+|[0-9]{1,}%|[0-9]{1,}\.[0-9]{1,}%|\d+\.\d+%}"
):
    regex = reg
    string = string.replace("-", " ")
    return " ".join(re.findall(regex, string))


def preprocess_text(text):
    # Convert to lowercase
    text = text.lower()
    # Tokenize the text
    tokens = word_tokenize(text)
    # Remove stop words
    stop_words = set(stopwords.words("english"))
    tokens = [token for token in tokens if token not in stop_words]
    # Stem the tokens
    porter_stemmer = PorterStemmer()
    tokens = [porter_stemmer.stem(token) for token in tokens]
    # Join the tokens back into a single string
    preprocessed_text = " ".join(tokens)
    preprocessed_text = tokenizer(preprocessed_text)

    return preprocessed_text


# Initialize Spacy Model


@st.cache_resource
def get_spacy_model():
    return spacy.load("en_core_web_trf")


@st.cache_resource
def get_flan_alpaca_xl_model():
    model = AutoModelForSeq2SeqLM.from_pretrained(
        "/home/user/app/models/flan-alpaca-xl/"
    )
    tokenizer = AutoTokenizer.from_pretrained(
        "/home/user/app/models/flan-alpaca-xl/"
    )
    return model, tokenizer


# Initialize models from HuggingFace


@st.cache_resource
def get_t5_model():
    return pipeline("summarization", model="t5-small", tokenizer="t5-small")


@st.cache_resource
def get_flan_t5_model():
    tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
    model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
    return model, tokenizer


@st.cache_resource
def get_mpnet_embedding_model():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = SentenceTransformer(
        "sentence-transformers/all-mpnet-base-v2", device=device
    )
    model.max_seq_length = 512
    return model


@st.cache_resource
def get_splade_sparse_embedding_model():
    model_sparse = "naver/splade-cocondenser-ensembledistil"
    # check device
    device = "cuda" if torch.cuda.is_available() else "cpu"
    tokenizer = AutoTokenizer.from_pretrained(model_sparse)
    model_sparse = AutoModelForMaskedLM.from_pretrained(model_sparse)
    # move to gpu if available
    model_sparse.to(device)
    return model_sparse, tokenizer


@st.cache_resource
def get_sgpt_embedding_model():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = SentenceTransformer(
        "Muennighoff/SGPT-125M-weightedmean-nli-bitfit", device=device
    )
    model.max_seq_length = 512
    return model


@st.cache_resource
def get_instructor_embedding_model():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = INSTRUCTOR("hkunlp/instructor-xl")
    return model

@st.cache_resource
def get_instructor_embedding_model_api():
    client = Client("https://awinml-api-instructor-xl-2.hf.space/")
    return client


@st.cache_resource
def get_alpaca_model():
    client = Client("https://awinml-alpaca-cpp.hf.space")
    return client


@st.cache_resource
def get_bm25_model(data):
    corpus = data.Text.tolist()
    corpus_clean = [preprocess_text(x) for x in corpus]
    tokenized_corpus = [doc.split(" ") for doc in corpus_clean]
    bm25 = BM25Plus(tokenized_corpus)
    return corpus, bm25


@st.cache_resource
def save_key(api_key):
    return api_key


# Text Generation


def gpt_turbo_model(prompt):
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "user", "content": prompt},
        ],
        temperature=0.01,
        max_tokens=1024,
    )
    return response["choices"][0]["message"]["content"]


def generate_text_flan_t5(model, tokenizer, input_text):
    input_ids = tokenizer(input_text, return_tensors="pt").input_ids
    outputs = model.generate(input_ids, temperature=0.5, max_length=512)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)


# Entity Extraction


def generate_entities_flan_alpaca_inference_api(prompt):
    API_URL = "https://api-inference.huggingface.co/models/declare-lab/flan-alpaca-xl"
    API_TOKEN = st.secrets["hg_key"]
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    payload = {
        "inputs": prompt,
        "parameters": {
            "do_sample": True,
            "temperature": 0.1,
            "max_length": 80,
        },
        "options": {"use_cache": False, "wait_for_model": True},
    }
    try:
        data = json.dumps(payload)
        # Key not used as headers=headers not passed
        response = requests.request("POST", API_URL, data=data)
        output = json.loads(response.content.decode("utf-8"))[0][
            "generated_text"
        ]
    except:
        output = ""
    print(output)
    return output


def generate_entities_flan_alpaca_checkpoint(model, tokenizer, prompt):
    model_inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = model_inputs["input_ids"]
    generation_output = model.generate(
        input_ids=input_ids,
        temperature=0.1,
        top_p=0.5,
        max_new_tokens=1024,
    )
    output = tokenizer.decode(generation_output[0], skip_special_tokens=True)
    return output