Spaces:
Build error
Build error
Upload 16 files (#11)
Browse files- Upload 16 files (75295ea33fd86490c00779398a7101ad71ee52e9)
- app.py +9 -0
- requirements.txt +3 -0
- utils/__pycache__/entity_extraction.cpython-38.pyc +0 -0
- utils/__pycache__/models.cpython-38.pyc +0 -0
- utils/__pycache__/retriever.cpython-38.pyc +0 -0
- utils/__pycache__/vector_index.cpython-38.pyc +0 -0
- utils/entity_extraction.py +50 -0
- utils/models.py +7 -0
- utils/retriever.py +8 -0
app.py
CHANGED
@@ -14,12 +14,14 @@ from utils.entity_extraction import (
|
|
14 |
extract_ticker_spacy,
|
15 |
format_entities_flan_alpaca,
|
16 |
generate_alpaca_ner_prompt,
|
|
|
17 |
)
|
18 |
from utils.models import (
|
19 |
generate_entities_flan_alpaca_checkpoint,
|
20 |
generate_entities_flan_alpaca_inference_api,
|
21 |
generate_text_flan_t5,
|
22 |
get_data,
|
|
|
23 |
get_flan_alpaca_xl_model,
|
24 |
get_flan_t5_model,
|
25 |
get_instructor_embedding_model,
|
@@ -85,6 +87,8 @@ with st.sidebar:
|
|
85 |
if ner_choice == "Spacy":
|
86 |
ner_model = get_spacy_model()
|
87 |
|
|
|
|
|
88 |
with col1:
|
89 |
st.subheader("Question")
|
90 |
if document_type == "Single-Document":
|
@@ -104,6 +108,10 @@ with col1:
|
|
104 |
value="How was AAPL's capex spend compared to GOOGL?",
|
105 |
)
|
106 |
|
|
|
|
|
|
|
|
|
107 |
years_choice = ["2020", "2019", "2018", "2017", "2016", "All"]
|
108 |
quarters_choice = ["Q1", "Q2", "Q3", "Q4", "All"]
|
109 |
ticker_choice = [
|
@@ -382,6 +390,7 @@ if document_type == "Single-Document":
|
|
382 |
quarter,
|
383 |
ticker,
|
384 |
participant_type,
|
|
|
385 |
threshold,
|
386 |
)
|
387 |
|
|
|
14 |
extract_ticker_spacy,
|
15 |
format_entities_flan_alpaca,
|
16 |
generate_alpaca_ner_prompt,
|
17 |
+
extract_keywords
|
18 |
)
|
19 |
from utils.models import (
|
20 |
generate_entities_flan_alpaca_checkpoint,
|
21 |
generate_entities_flan_alpaca_inference_api,
|
22 |
generate_text_flan_t5,
|
23 |
get_data,
|
24 |
+
get_alpaca_model,
|
25 |
get_flan_alpaca_xl_model,
|
26 |
get_flan_t5_model,
|
27 |
get_instructor_embedding_model,
|
|
|
87 |
if ner_choice == "Spacy":
|
88 |
ner_model = get_spacy_model()
|
89 |
|
90 |
+
alpaca_model = get_alpaca_model()
|
91 |
+
|
92 |
with col1:
|
93 |
st.subheader("Question")
|
94 |
if document_type == "Single-Document":
|
|
|
108 |
value="How was AAPL's capex spend compared to GOOGL?",
|
109 |
)
|
110 |
|
111 |
+
|
112 |
+
# Extract keywords from query
|
113 |
+
keywords = extract_keywords(query_text, alpaca_model)
|
114 |
+
|
115 |
years_choice = ["2020", "2019", "2018", "2017", "2016", "All"]
|
116 |
quarters_choice = ["Q1", "Q2", "Q3", "Q4", "All"]
|
117 |
ticker_choice = [
|
|
|
390 |
quarter,
|
391 |
ticker,
|
392 |
participant_type,
|
393 |
+
keywords,
|
394 |
threshold,
|
395 |
)
|
396 |
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
pandas
|
|
|
2 |
tqdm
|
3 |
pinecone-client
|
4 |
spacy[transformers] == 3.3.0
|
@@ -12,3 +13,5 @@ streamlit
|
|
12 |
streamlit-scrollable-textbox
|
13 |
openai
|
14 |
InstructorEmbedding
|
|
|
|
|
|
1 |
pandas
|
2 |
+
nltk
|
3 |
tqdm
|
4 |
pinecone-client
|
5 |
spacy[transformers] == 3.3.0
|
|
|
13 |
streamlit-scrollable-textbox
|
14 |
openai
|
15 |
InstructorEmbedding
|
16 |
+
gradio_client
|
17 |
+
|
utils/__pycache__/entity_extraction.cpython-38.pyc
CHANGED
Binary files a/utils/__pycache__/entity_extraction.cpython-38.pyc and b/utils/__pycache__/entity_extraction.cpython-38.pyc differ
|
|
utils/__pycache__/models.cpython-38.pyc
CHANGED
Binary files a/utils/__pycache__/models.cpython-38.pyc and b/utils/__pycache__/models.cpython-38.pyc differ
|
|
utils/__pycache__/retriever.cpython-38.pyc
CHANGED
Binary files a/utils/__pycache__/retriever.cpython-38.pyc and b/utils/__pycache__/retriever.cpython-38.pyc differ
|
|
utils/__pycache__/vector_index.cpython-38.pyc
CHANGED
Binary files a/utils/__pycache__/vector_index.cpython-38.pyc and b/utils/__pycache__/vector_index.cpython-38.pyc differ
|
|
utils/entity_extraction.py
CHANGED
@@ -1,4 +1,54 @@
|
|
1 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
# Entity Extraction
|
4 |
|
|
|
1 |
import re
|
2 |
+
from nltk.stem import PorterStemmer, WordNetLemmatizer
|
3 |
+
|
4 |
+
# Keyword Extracttion
|
5 |
+
|
6 |
+
|
7 |
+
def expand_list_of_lists(list_of_lists):
|
8 |
+
"""
|
9 |
+
Expands a list of lists of strings to a list of strings.
|
10 |
+
Args:
|
11 |
+
list_of_lists: A list of lists of strings.
|
12 |
+
Returns:
|
13 |
+
A list of strings.
|
14 |
+
"""
|
15 |
+
|
16 |
+
expanded_list = []
|
17 |
+
for inner_list in list_of_lists:
|
18 |
+
for string in inner_list:
|
19 |
+
expanded_list.append(string)
|
20 |
+
return expanded_list
|
21 |
+
|
22 |
+
|
23 |
+
def all_keywords_combs(texts):
|
24 |
+
|
25 |
+
texts = [text.split(" ") for text in texts]
|
26 |
+
texts = expand_list_of_lists(texts)
|
27 |
+
|
28 |
+
# Convert all strings to lowercase.
|
29 |
+
lower_texts = [text.lower() for text in texts]
|
30 |
+
|
31 |
+
# Stem the words in each string.
|
32 |
+
stemmer = PorterStemmer()
|
33 |
+
stem_texts = [stemmer.stem(text) for text in texts]
|
34 |
+
|
35 |
+
# Lemmatize the words in each string.
|
36 |
+
lemmatizer = WordNetLemmatizer()
|
37 |
+
lemm_texts = [lemmatizer.lemmatize(text) for text in texts]
|
38 |
+
|
39 |
+
texts.extend(lower_texts)
|
40 |
+
texts.extend(stem_texts)
|
41 |
+
texts.extend(lemm_texts)
|
42 |
+
return texts
|
43 |
+
|
44 |
+
|
45 |
+
def extract_keywords(query_text, model):
|
46 |
+
prompt = f"###Instruction:Extract the important keywords which describe the context accurately.\n\nInput:{query_text}\n\n###Response:"
|
47 |
+
response = model.predict(prompt)
|
48 |
+
keywords = response.split(", ")
|
49 |
+
keywords = all_keywords_combs(keywords)
|
50 |
+
return keywords
|
51 |
+
|
52 |
|
53 |
# Entity Extraction
|
54 |
|
utils/models.py
CHANGED
@@ -10,6 +10,7 @@ import streamlit_scrollable_textbox as stx
|
|
10 |
import torch
|
11 |
from InstructorEmbedding import INSTRUCTOR
|
12 |
from sentence_transformers import SentenceTransformer
|
|
|
13 |
from tqdm import tqdm
|
14 |
from transformers import (
|
15 |
AutoModelForMaskedLM,
|
@@ -103,6 +104,12 @@ def get_instructor_embedding_model():
|
|
103 |
return model
|
104 |
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
@st.experimental_memo
|
107 |
def save_key(api_key):
|
108 |
return api_key
|
|
|
10 |
import torch
|
11 |
from InstructorEmbedding import INSTRUCTOR
|
12 |
from sentence_transformers import SentenceTransformer
|
13 |
+
from gradio_client import Client
|
14 |
from tqdm import tqdm
|
15 |
from transformers import (
|
16 |
AutoModelForMaskedLM,
|
|
|
104 |
return model
|
105 |
|
106 |
|
107 |
+
@st.experimental_singleton
|
108 |
+
def get_alpaca_model():
|
109 |
+
client = Client("https://awinml-alpaca-cpp.hf.space")
|
110 |
+
return client
|
111 |
+
|
112 |
+
|
113 |
@st.experimental_memo
|
114 |
def save_key(api_key):
|
115 |
return api_key
|
utils/retriever.py
CHANGED
@@ -7,6 +7,7 @@ def query_pinecone_sparse(
|
|
7 |
quarter,
|
8 |
ticker,
|
9 |
participant_type,
|
|
|
10 |
threshold=0.25,
|
11 |
):
|
12 |
if participant_type == "Company Speaker":
|
@@ -33,6 +34,7 @@ def query_pinecone_sparse(
|
|
33 |
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
34 |
"Ticker": {"$eq": ticker},
|
35 |
"QA_Flag": {"$eq": participant},
|
|
|
36 |
},
|
37 |
include_metadata=True,
|
38 |
)
|
@@ -54,6 +56,7 @@ def query_pinecone_sparse(
|
|
54 |
"Quarter": {"$eq": quarter},
|
55 |
"Ticker": {"$eq": ticker},
|
56 |
"QA_Flag": {"$eq": participant},
|
|
|
57 |
},
|
58 |
include_metadata=True,
|
59 |
)
|
@@ -68,6 +71,7 @@ def query_pinecone_sparse(
|
|
68 |
"Quarter": {"$eq": quarter},
|
69 |
"Ticker": {"$eq": ticker},
|
70 |
"QA_Flag": {"$eq": participant},
|
|
|
71 |
},
|
72 |
include_metadata=True,
|
73 |
)
|
@@ -88,6 +92,7 @@ def query_pinecone(
|
|
88 |
quarter,
|
89 |
ticker,
|
90 |
participant_type,
|
|
|
91 |
threshold=0.25,
|
92 |
):
|
93 |
if participant_type == "Company Speaker":
|
@@ -113,6 +118,7 @@ def query_pinecone(
|
|
113 |
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
114 |
"Ticker": {"$eq": ticker},
|
115 |
"QA_Flag": {"$eq": participant},
|
|
|
116 |
},
|
117 |
include_metadata=True,
|
118 |
)
|
@@ -133,6 +139,7 @@ def query_pinecone(
|
|
133 |
"Quarter": {"$eq": quarter},
|
134 |
"Ticker": {"$eq": ticker},
|
135 |
"QA_Flag": {"$eq": participant},
|
|
|
136 |
},
|
137 |
include_metadata=True,
|
138 |
)
|
@@ -146,6 +153,7 @@ def query_pinecone(
|
|
146 |
"Quarter": {"$eq": quarter},
|
147 |
"Ticker": {"$eq": ticker},
|
148 |
"QA_Flag": {"$eq": participant},
|
|
|
149 |
},
|
150 |
include_metadata=True,
|
151 |
)
|
|
|
7 |
quarter,
|
8 |
ticker,
|
9 |
participant_type,
|
10 |
+
keywords=None,
|
11 |
threshold=0.25,
|
12 |
):
|
13 |
if participant_type == "Company Speaker":
|
|
|
34 |
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
35 |
"Ticker": {"$eq": ticker},
|
36 |
"QA_Flag": {"$eq": participant},
|
37 |
+
"Keywords": {"$in": keywords}
|
38 |
},
|
39 |
include_metadata=True,
|
40 |
)
|
|
|
56 |
"Quarter": {"$eq": quarter},
|
57 |
"Ticker": {"$eq": ticker},
|
58 |
"QA_Flag": {"$eq": participant},
|
59 |
+
"Keywords": {"$in": keywords}
|
60 |
},
|
61 |
include_metadata=True,
|
62 |
)
|
|
|
71 |
"Quarter": {"$eq": quarter},
|
72 |
"Ticker": {"$eq": ticker},
|
73 |
"QA_Flag": {"$eq": participant},
|
74 |
+
"Keywords": {"$in": keywords}
|
75 |
},
|
76 |
include_metadata=True,
|
77 |
)
|
|
|
92 |
quarter,
|
93 |
ticker,
|
94 |
participant_type,
|
95 |
+
keywords=None,
|
96 |
threshold=0.25,
|
97 |
):
|
98 |
if participant_type == "Company Speaker":
|
|
|
118 |
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
119 |
"Ticker": {"$eq": ticker},
|
120 |
"QA_Flag": {"$eq": participant},
|
121 |
+
"Keywords": {"$in": keywords}
|
122 |
},
|
123 |
include_metadata=True,
|
124 |
)
|
|
|
139 |
"Quarter": {"$eq": quarter},
|
140 |
"Ticker": {"$eq": ticker},
|
141 |
"QA_Flag": {"$eq": participant},
|
142 |
+
"Keywords": {"$in": keywords}
|
143 |
},
|
144 |
include_metadata=True,
|
145 |
)
|
|
|
153 |
"Quarter": {"$eq": quarter},
|
154 |
"Ticker": {"$eq": ticker},
|
155 |
"QA_Flag": {"$eq": participant},
|
156 |
+
"Keywords": {"$in": keywords}
|
157 |
},
|
158 |
include_metadata=True,
|
159 |
)
|