Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline | |
from stqdm import stqdm | |
from simplet5 import SimpleT5 | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from transformers import BertTokenizer | |
from tensorflow.keras.models import load_model | |
from tensorflow.nn import softmax | |
import numpy as np | |
from datetime import datetime | |
import logging | |
from constants import sub_themes_dict | |
date = datetime.now().strftime(r"%Y-%m-%d") | |
model_classes = { | |
0: "Ads", | |
1: "Apps", | |
2: "Battery", | |
3: "Charging", | |
4: "Delivery", | |
5: "Display", | |
6: "FOS", | |
7: "HW", | |
8: "Order", | |
9: "Refurb", | |
10: "SD", | |
11: "Setup", | |
12: "Unknown", | |
13: "WiFi", | |
} | |
def load_t5(): | |
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") | |
tokenizer = AutoTokenizer.from_pretrained("t5-base") | |
return model, tokenizer | |
def custom_model(): | |
return pipeline("summarization", model="my_awesome_sum/") | |
def convert_df(df): | |
# IMPORTANT: Cache the conversion to prevent computation on every rerun | |
return df.to_csv(index=False).encode("utf-8") | |
def load_one_line_summarizer(model): | |
return model.load_model("t5", "snrspeaks/t5-one-line-summary") | |
def classify_category(): | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
new_model = load_model("model") | |
return tokenizer, new_model | |
def classify_sub_theme(): | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
new_model = load_model("sub_theme_model") | |
return tokenizer, new_model | |
st.set_page_config(layout="wide", page_title="Amazon Review Summarizer") | |
st.title("Amazon Review Summarizer") | |
uploaded_file = st.file_uploader("Choose a file", type=["xlsx", "xls", "csv"]) | |
summarizer_option = st.selectbox( | |
"Select Summarizer", | |
("Custom trained on the dataset", "t5-base", "t5-one-line-summary"), | |
) | |
col1, col2, col3 = st.columns([1, 1, 1]) | |
with col1: | |
summary_yes = st.checkbox("Summrization", value=False) | |
with col2: | |
classification = st.checkbox("Classify Category", value=True) | |
with col3: | |
sub_theme = st.checkbox("Sub theme classification", value=True) | |
ps = st.empty() | |
if st.button("Process", type="primary"): | |
cancel_button = st.empty() | |
cancel_button2 = st.empty() | |
cancel_button3 = st.empty() | |
if uploaded_file is not None: | |
if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]: | |
df = pd.read_excel(uploaded_file, engine="openpyxl") | |
if uploaded_file.name.split(".")[-1] in [".csv"]: | |
df = pd.read_csv(uploaded_file) | |
columns = df.columns.values.tolist() | |
columns = [x.lower() for x in columns] | |
df.columns = columns | |
print(summarizer_option) | |
output = pd.DataFrame() | |
try: | |
text = df["text"].values.tolist() | |
output["text"] = text | |
if summarizer_option == "Custom trained on the dataset": | |
if summary_yes: | |
model = custom_model() | |
progress_text = "Summarization in progress. Please wait." | |
summary = [] | |
for x in stqdm(range(len(text))): | |
if cancel_button.button("Cancel", key=x): | |
del model | |
break | |
try: | |
summary.append( | |
model( | |
f"summarize: {text[x]}", | |
max_length=50, | |
early_stopping=True, | |
)[0]["summary_text"] | |
) | |
except: | |
pass | |
output["summary"] = summary | |
del model | |
if classification: | |
classification_token, classification_model = classify_category() | |
tf_batch = classification_token( | |
text, | |
max_length=128, | |
padding=True, | |
truncation=True, | |
return_tensors="tf", | |
) | |
with st.spinner(text="identifying theme"): | |
tf_outputs = classification_model(tf_batch) | |
classes = [] | |
with st.spinner(text="creating output file"): | |
for x in stqdm(range(len(text))): | |
tf_o = softmax(tf_outputs["logits"][x], axis=-1) | |
label = np.argmax(tf_o, axis=0) | |
keys = model_classes | |
classes.append(keys.get(label)) | |
output["category"] = classes | |
del classification_token, classification_model | |
if sub_theme: | |
classification_token, classification_model = classify_sub_theme() | |
tf_batch = classification_token( | |
text, | |
max_length=128, | |
padding=True, | |
truncation=True, | |
return_tensors="tf", | |
) | |
with st.spinner(text="identifying sub theme"): | |
tf_outputs = classification_model(tf_batch) | |
classes = [] | |
with st.spinner(text="creating output file"): | |
for x in stqdm(range(len(text))): | |
tf_o = softmax(tf_outputs["logits"][x], axis=-1) | |
label = np.argmax(tf_o, axis=0) | |
keys = sub_themes_dict | |
classes.append(keys.get(label)) | |
output["sub theme"] = classes | |
del classification_token, classification_model | |
csv = convert_df(output) | |
st.download_button( | |
label="Download data as CSV", | |
data=csv, | |
file_name=f"{summarizer_option}_{date}_df.csv", | |
mime="text/csv", | |
) | |
if summarizer_option == "t5-base": | |
if summary_yes: | |
model, tokenizer = load_t5() | |
summary = [] | |
for x in stqdm(range(len(text))): | |
if cancel_button2.button("Cancel", key=x): | |
del model, tokenizer | |
break | |
tokens_input = tokenizer.encode( | |
"summarize: " + text[x], | |
return_tensors="pt", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
) | |
summary_ids = model.generate( | |
tokens_input, | |
min_length=80, | |
max_length=150, | |
length_penalty=20, | |
num_beams=2, | |
) | |
summary_gen = tokenizer.decode( | |
summary_ids[0], skip_special_tokens=True | |
) | |
summary.append(summary_gen) | |
del model, tokenizer | |
output["summary"] = summary | |
if classification: | |
classification_token, classification_model = classify_category() | |
tf_batch = classification_token( | |
text, | |
max_length=128, | |
padding=True, | |
truncation=True, | |
return_tensors="tf", | |
) | |
with st.spinner(text="identifying theme"): | |
tf_outputs = classification_model(tf_batch) | |
classes = [] | |
with st.spinner(text="creating output file"): | |
for x in stqdm(range(len(text))): | |
tf_o = softmax(tf_outputs["logits"][x], axis=-1) | |
label = np.argmax(tf_o, axis=0) | |
keys = model_classes | |
classes.append(keys.get(label)) | |
output["category"] = classes | |
del classification_token, classification_model | |
if sub_theme: | |
classification_token, classification_model = classify_sub_theme() | |
tf_batch = classification_token( | |
text, | |
max_length=128, | |
padding=True, | |
truncation=True, | |
return_tensors="tf", | |
) | |
with st.spinner(text="identifying sub theme"): | |
tf_outputs = classification_model(tf_batch) | |
classes = [] | |
with st.spinner(text="creating output file"): | |
for x in stqdm(range(len(text))): | |
tf_o = softmax(tf_outputs["logits"][x], axis=-1) | |
label = np.argmax(tf_o, axis=0) | |
keys = sub_themes_dict | |
classes.append(keys.get(label)) | |
output["sub theme"] = classes | |
del classification_token, classification_model | |
csv = convert_df(output) | |
st.download_button( | |
label="Download data as CSV", | |
data=csv, | |
file_name=f"{summarizer_option}_{date}_df.csv", | |
mime="text/csv", | |
) | |
if summarizer_option == "t5-one-line-summary": | |
if summary_yes: | |
model = SimpleT5() | |
load_one_line_summarizer(model=model) | |
summary = [] | |
for x in stqdm(range(len(text))): | |
if cancel_button3.button("Cancel", key=x): | |
del model | |
break | |
try: | |
summary.append(model.predict(text[x])[0]) | |
except: | |
pass | |
output["summary"] = summary | |
del model | |
if classification: | |
classification_token, classification_model = classify_category() | |
tf_batch = classification_token( | |
text, | |
max_length=128, | |
padding=True, | |
truncation=True, | |
return_tensors="tf", | |
) | |
with st.spinner(text="identifying theme"): | |
tf_outputs = classification_model(tf_batch) | |
classes = [] | |
with st.spinner(text="creating output file"): | |
for x in stqdm(range(len(text))): | |
tf_o = softmax(tf_outputs["logits"][x], axis=-1) | |
label = np.argmax(tf_o, axis=0) | |
keys = model_classes | |
classes.append(keys.get(label)) | |
output["category"] = classes | |
del classification_token, classification_model | |
if sub_theme: | |
classification_token, classification_model = classify_sub_theme() | |
tf_batch = classification_token( | |
text, | |
max_length=128, | |
padding=True, | |
truncation=True, | |
return_tensors="tf", | |
) | |
with st.spinner(text="identifying sub theme"): | |
tf_outputs = classification_model(tf_batch) | |
classes = [] | |
with st.spinner(text="creating output file"): | |
for x in stqdm(range(len(text))): | |
tf_o = softmax(tf_outputs["logits"][x], axis=-1) | |
label = np.argmax(tf_o, axis=0) | |
keys = sub_themes_dict | |
classes.append(keys.get(label)) | |
output["sub theme"] = classes | |
del classification_token, classification_model | |
csv = convert_df(output) | |
st.download_button( | |
label="Download data as CSV", | |
data=csv, | |
file_name=f"{summarizer_option}_{date}_df.csv", | |
mime="text/csv", | |
) | |
except KeyError: | |
st.error( | |
"Please Make sure that your data must have a column named text", | |
icon="๐จ", | |
) | |
st.info("Text column must have amazon reviews", icon="โน๏ธ") | |
except BaseException as e: | |
logging.exception("An exception was occurred") | |