File size: 13,545 Bytes
6f595b5
 
 
 
 
 
4e736ad
 
 
 
 
 
7d73e2a
d95a5da
4e736ad
3d51c8f
0753231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e736ad
3d51c8f
 
6f595b5
 
 
 
 
f3ead1a
6f595b5
3d51c8f
6f595b5
 
 
 
3d51c8f
6f595b5
 
3086575
6f595b5
 
3d51c8f
6f595b5
 
 
 
3d51c8f
4e736ad
 
 
 
 
 
3d51c8f
 
 
 
 
 
 
6f595b5
 
 
 
 
 
 
 
3d51c8f
 
 
 
 
 
 
 
 
 
5afe7ea
6f595b5
3d51c8f
 
 
 
 
6f595b5
e7ee4c6
6f595b5
e7ee4c6
 
 
6f595b5
 
 
 
3d51c8f
fecaa45
 
3d51c8f
4022606
3d51c8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e736ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d51c8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d73e2a
3d51c8f
 
 
4e736ad
4022606
 
 
 
4e736ad
4022606
6f595b5
4022606
3d51c8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f595b5
4e736ad
 
 
 
 
 
 
 
 
 
 
 
 
 
7673771
4e736ad
 
 
 
3d51c8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d73e2a
3d51c8f
 
 
4022606
 
 
 
4e736ad
4022606
 
6f595b5
4022606
3d51c8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e736ad
 
 
 
 
 
 
 
 
 
 
 
 
 
7673771
4e736ad
 
 
 
7d73e2a
3d51c8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d73e2a
3d51c8f
 
 
4e736ad
4022606
 
 
 
4e736ad
4022606
 
4e736ad
4022606
 
 
 
6f595b5
4022606
4e736ad
3d51c8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import streamlit as st
import pandas as pd
from transformers import pipeline
from stqdm import stqdm
from simplet5 import SimpleT5
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import BertTokenizer
from tensorflow.keras.models import load_model
from tensorflow.nn import softmax
import numpy as np
from datetime import datetime
import logging
from constants import sub_themes_dict

date = datetime.now().strftime(r"%Y-%m-%d")
model_classes = {
    0: "Ads",
    1: "Apps",
    2: "Battery",
    3: "Charging",
    4: "Delivery",
    5: "Display",
    6: "FOS",
    7: "HW",
    8: "Order",
    9: "Refurb",
    10: "SD",
    11: "Setup",
    12: "Unknown",
    13: "WiFi",
}


@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def load_t5():
    model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

    tokenizer = AutoTokenizer.from_pretrained("t5-base")
    return model, tokenizer


@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def custom_model():
    return pipeline("summarization", model="my_awesome_sum/")


@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv(index=False).encode("utf-8")


@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def load_one_line_summarizer(model):
    return model.load_model("t5", "snrspeaks/t5-one-line-summary")


@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def classify_category():
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
    new_model = load_model("model")
    return tokenizer, new_model


@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def classify_sub_theme():
    tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
    new_model = load_model("sub_theme_model")
    return tokenizer, new_model


st.set_page_config(layout="wide", page_title="Amazon Review Summarizer")
st.title("Amazon Review Summarizer")

uploaded_file = st.file_uploader("Choose a file", type=["xlsx", "xls", "csv"])
summarizer_option = st.selectbox(
    "Select Summarizer",
    ("Custom trained on the dataset", "t5-base", "t5-one-line-summary"),
)
col1, col2, col3 = st.columns([1, 1, 1])

with col1:
    summary_yes = st.checkbox("Summrization", value=False)

with col2:
    classification = st.checkbox("Classify Category", value=True)

with col3:
    sub_theme = st.checkbox("Sub theme classification", value=True)

ps = st.empty()

if st.button("Process", type="primary"):
    cancel_button = st.empty()
    cancel_button2 = st.empty()
    cancel_button3 = st.empty()
    if uploaded_file is not None:
        if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:

            df = pd.read_excel(uploaded_file, engine="openpyxl")
        if uploaded_file.name.split(".")[-1] in [".csv"]:
            df = pd.read_csv(uploaded_file)
        columns = df.columns.values.tolist()
        columns = [x.lower() for x in columns]
        df.columns = columns
        print(summarizer_option)
        output = pd.DataFrame()
        try:
            text = df["text"].values.tolist()
            output["text"] = text
            if summarizer_option == "Custom trained on the dataset":
                if summary_yes:
                    model = custom_model()

                    progress_text = "Summarization in progress. Please wait."
                    summary = []

                    for x in stqdm(range(len(text))):

                        if cancel_button.button("Cancel", key=x):
                            del model
                            break
                        try:
                            summary.append(
                                model(
                                    f"summarize: {text[x]}",
                                    max_length=50,
                                    early_stopping=True,
                                )[0]["summary_text"]
                            )
                        except:
                            pass
                    output["summary"] = summary
                    del model
                if classification:
                    classification_token, classification_model = classify_category()
                    tf_batch = classification_token(
                        text,
                        max_length=128,
                        padding=True,
                        truncation=True,
                        return_tensors="tf",
                    )
                    with st.spinner(text="identifying theme"):
                        tf_outputs = classification_model(tf_batch)
                    classes = []
                    with st.spinner(text="creating output file"):
                        for x in stqdm(range(len(text))):
                            tf_o = softmax(tf_outputs["logits"][x], axis=-1)
                            label = np.argmax(tf_o, axis=0)
                            keys = model_classes
                            classes.append(keys.get(label))
                        output["category"] = classes
                    del classification_token, classification_model
                if sub_theme:
                    classification_token, classification_model = classify_sub_theme()
                    tf_batch = classification_token(
                        text,
                        max_length=128,
                        padding=True,
                        truncation=True,
                        return_tensors="tf",
                    )
                    with st.spinner(text="identifying sub theme"):
                        tf_outputs = classification_model(tf_batch)
                    classes = []
                    with st.spinner(text="creating output file"):
                        for x in stqdm(range(len(text))):
                            tf_o = softmax(tf_outputs["logits"][x], axis=-1)
                            label = np.argmax(tf_o, axis=0)
                            keys = sub_themes_dict
                            classes.append(keys.get(label))
                        output["sub theme"] = classes
                    del classification_token, classification_model

                csv = convert_df(output)
                st.download_button(
                    label="Download data as CSV",
                    data=csv,
                    file_name=f"{summarizer_option}_{date}_df.csv",
                    mime="text/csv",
                )
            if summarizer_option == "t5-base":
                if summary_yes:
                    model, tokenizer = load_t5()
                    summary = []
                    for x in stqdm(range(len(text))):

                        if cancel_button2.button("Cancel", key=x):
                            del model, tokenizer
                            break
                        tokens_input = tokenizer.encode(
                            "summarize: " + text[x],
                            return_tensors="pt",
                            max_length=tokenizer.model_max_length,
                            truncation=True,
                        )
                        summary_ids = model.generate(
                            tokens_input,
                            min_length=80,
                            max_length=150,
                            length_penalty=20,
                            num_beams=2,
                        )
                        summary_gen = tokenizer.decode(
                            summary_ids[0], skip_special_tokens=True
                        )
                        summary.append(summary_gen)
                    del model, tokenizer
                    output["summary"] = summary

                if classification:
                    classification_token, classification_model = classify_category()
                    tf_batch = classification_token(
                        text,
                        max_length=128,
                        padding=True,
                        truncation=True,
                        return_tensors="tf",
                    )
                    with st.spinner(text="identifying theme"):
                        tf_outputs = classification_model(tf_batch)
                    classes = []
                    with st.spinner(text="creating output file"):
                        for x in stqdm(range(len(text))):
                            tf_o = softmax(tf_outputs["logits"][x], axis=-1)
                            label = np.argmax(tf_o, axis=0)
                            keys = model_classes
                            classes.append(keys.get(label))
                        output["category"] = classes
                    del classification_token, classification_model
                if sub_theme:
                    classification_token, classification_model = classify_sub_theme()
                    tf_batch = classification_token(
                        text,
                        max_length=128,
                        padding=True,
                        truncation=True,
                        return_tensors="tf",
                    )
                    with st.spinner(text="identifying sub theme"):
                        tf_outputs = classification_model(tf_batch)
                    classes = []
                    with st.spinner(text="creating output file"):
                        for x in stqdm(range(len(text))):
                            tf_o = softmax(tf_outputs["logits"][x], axis=-1)
                            label = np.argmax(tf_o, axis=0)
                            keys = sub_themes_dict
                            classes.append(keys.get(label))
                        output["sub theme"] = classes
                    del classification_token, classification_model
                csv = convert_df(output)
                st.download_button(
                    label="Download data as CSV",
                    data=csv,
                    file_name=f"{summarizer_option}_{date}_df.csv",
                    mime="text/csv",
                )

            if summarizer_option == "t5-one-line-summary":
                if summary_yes:
                    model = SimpleT5()
                    load_one_line_summarizer(model=model)

                    summary = []
                    for x in stqdm(range(len(text))):
                        if cancel_button3.button("Cancel", key=x):
                            del model
                            break
                        try:
                            summary.append(model.predict(text[x])[0])
                        except:
                            pass
                    output["summary"] = summary
                    del model

                if classification:
                    classification_token, classification_model = classify_category()
                    tf_batch = classification_token(
                        text,
                        max_length=128,
                        padding=True,
                        truncation=True,
                        return_tensors="tf",
                    )
                    with st.spinner(text="identifying theme"):
                        tf_outputs = classification_model(tf_batch)
                    classes = []
                    with st.spinner(text="creating output file"):
                        for x in stqdm(range(len(text))):
                            tf_o = softmax(tf_outputs["logits"][x], axis=-1)
                            label = np.argmax(tf_o, axis=0)
                            keys = model_classes
                            classes.append(keys.get(label))
                        output["category"] = classes
                    del classification_token, classification_model
                if sub_theme:
                    classification_token, classification_model = classify_sub_theme()
                    tf_batch = classification_token(
                        text,
                        max_length=128,
                        padding=True,
                        truncation=True,
                        return_tensors="tf",
                    )
                    with st.spinner(text="identifying sub theme"):
                        tf_outputs = classification_model(tf_batch)
                    classes = []
                    with st.spinner(text="creating output file"):
                        for x in stqdm(range(len(text))):
                            tf_o = softmax(tf_outputs["logits"][x], axis=-1)
                            label = np.argmax(tf_o, axis=0)
                            keys = sub_themes_dict
                            classes.append(keys.get(label))
                        output["sub theme"] = classes
                    del classification_token, classification_model

                csv = convert_df(output)
                st.download_button(
                    label="Download data as CSV",
                    data=csv,
                    file_name=f"{summarizer_option}_{date}_df.csv",
                    mime="text/csv",
                )

        except KeyError:
            st.error(
                "Please Make sure that your data must have a column named text",
                icon="🚨",
            )
            st.info("Text column must have amazon reviews", icon="ℹ️")
        except BaseException as e:
            logging.exception("An exception was occurred")