Spaces:
Running
on
Zero
Running
on
Zero
(docker_images)=
Docker images
We provide docker images to be able to test TTS without having to setup your own environment.
Using premade images
You can use premade images built automatically from the latest TTS version.
CPU version
docker pull ghcr.io/coqui-ai/tts-cpu
GPU version
docker pull ghcr.io/coqui-ai/tts
Building your own image
docker build -t tts .
Basic inference
Basic usage: generating an audio file from a text passed as argument. You can pass any tts argument after the image name.
CPU version
docker run --rm -v ~/tts-output:/root/tts-output ghcr.io/coqui-ai/tts-cpu --text "Hello." --out_path /root/tts-output/hello.wav
GPU version
For the GPU version, you need to have the latest NVIDIA drivers installed.
With nvidia-smi
you can check the CUDA version supported, it must be >= 11.8
docker run --rm --gpus all -v ~/tts-output:/root/tts-output ghcr.io/coqui-ai/tts --text "Hello." --out_path /root/tts-output/hello.wav --use_cuda true
Start a server
Starting a TTS server: Start the container and get a shell inside it.
CPU version
docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/coqui-ai/tts-cpu
python3 TTS/server/server.py --list_models #To get the list of available models
python3 TTS/server/server.py --model_name tts_models/en/vctk/vits
GPU version
docker run --rm -it -p 5002:5002 --gpus all --entrypoint /bin/bash ghcr.io/coqui-ai/tts
python3 TTS/server/server.py --list_models #To get the list of available models
python3 TTS/server/server.py --model_name tts_models/en/vctk/vits --use_cuda true
Click there and have fun with the server!