Spaces:
Running
on
A10G
Running
on
A10G
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
import logging | |
import os | |
import re | |
import yaml | |
import torch | |
from collections import OrderedDict | |
import datetime | |
def load_checkpoint(model: torch.nn.Module, path: str) -> dict: | |
if torch.cuda.is_available(): | |
logging.info("Checkpoint: loading from checkpoint %s for GPU" % path) | |
checkpoint = torch.load(path) | |
else: | |
logging.info("Checkpoint: loading from checkpoint %s for CPU" % path) | |
checkpoint = torch.load(path, map_location="cpu") | |
model.load_state_dict(checkpoint, strict=False) | |
info_path = re.sub(".pt$", ".yaml", path) | |
configs = {} | |
if os.path.exists(info_path): | |
with open(info_path, "r") as fin: | |
configs = yaml.load(fin, Loader=yaml.FullLoader) | |
return configs | |
def save_checkpoint(model: torch.nn.Module, path: str, infos=None): | |
""" | |
Args: | |
infos (dict or None): any info you want to save. | |
""" | |
logging.info("Checkpoint: save to checkpoint %s" % path) | |
if isinstance(model, torch.nn.DataParallel): | |
state_dict = model.module.state_dict() | |
elif isinstance(model, torch.nn.parallel.DistributedDataParallel): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
torch.save(state_dict, path) | |
info_path = re.sub(".pt$", ".yaml", path) | |
if infos is None: | |
infos = {} | |
infos["save_time"] = datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S") | |
with open(info_path, "w") as fout: | |
data = yaml.dump(infos) | |
fout.write(data) | |
def filter_modules(model_state_dict, modules): | |
new_mods = [] | |
incorrect_mods = [] | |
mods_model = model_state_dict.keys() | |
for mod in modules: | |
if any(key.startswith(mod) for key in mods_model): | |
new_mods += [mod] | |
else: | |
incorrect_mods += [mod] | |
if incorrect_mods: | |
logging.warning( | |
"module(s) %s don't match or (partially match) " | |
"available modules in model.", | |
incorrect_mods, | |
) | |
logging.warning("for information, the existing modules in model are:") | |
logging.warning("%s", mods_model) | |
return new_mods | |
def load_trained_modules(model: torch.nn.Module, args: None): | |
# Load encoder modules with pre-trained model(s). | |
enc_model_path = args.enc_init | |
enc_modules = args.enc_init_mods | |
main_state_dict = model.state_dict() | |
logging.warning("model(s) found for pre-initialization") | |
if os.path.isfile(enc_model_path): | |
logging.info("Checkpoint: loading from checkpoint %s for CPU" % enc_model_path) | |
model_state_dict = torch.load(enc_model_path, map_location="cpu") | |
modules = filter_modules(model_state_dict, enc_modules) | |
partial_state_dict = OrderedDict() | |
for key, value in model_state_dict.items(): | |
if any(key.startswith(m) for m in modules): | |
partial_state_dict[key] = value | |
main_state_dict.update(partial_state_dict) | |
else: | |
logging.warning("model was not found : %s", enc_model_path) | |
model.load_state_dict(main_state_dict) | |
configs = {} | |
return configs | |