Spaces:
Running
on
A10G
Running
on
A10G
add backend inference and inferface output
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +3 -0
- app.py +52 -13
- ckpts/svc/vocalist_l1_contentvec+whisper/args.json +2 -1
- config/audioldm.json +92 -0
- config/autoencoderkl.json +69 -0
- config/base.json +220 -0
- config/comosvc.json +216 -0
- config/diffusion.json +227 -0
- config/fs2.json +117 -0
- config/transformer.json +180 -0
- config/tts.json +23 -0
- config/valle.json +52 -0
- config/vits.json +101 -0
- config/vocoder.json +84 -0
- egs/vocoder/README.md +23 -0
- egs/vocoder/diffusion/README.md +0 -0
- egs/vocoder/diffusion/exp_config_base.json +0 -0
- egs/vocoder/gan/README.md +224 -0
- egs/vocoder/gan/_template/run.sh +143 -0
- egs/vocoder/gan/apnet/exp_config.json +45 -0
- egs/vocoder/gan/apnet/run.sh +143 -0
- egs/vocoder/gan/bigvgan/exp_config.json +66 -0
- egs/vocoder/gan/bigvgan/run.sh +143 -0
- egs/vocoder/gan/bigvgan_large/exp_config.json +70 -0
- egs/vocoder/gan/bigvgan_large/run.sh +143 -0
- egs/vocoder/gan/exp_config_base.json +111 -0
- egs/vocoder/gan/hifigan/exp_config.json +59 -0
- egs/vocoder/gan/hifigan/run.sh +143 -0
- egs/vocoder/gan/melgan/exp_config.json +34 -0
- egs/vocoder/gan/melgan/run.sh +143 -0
- egs/vocoder/gan/nsfhifigan/exp_config.json +83 -0
- egs/vocoder/gan/nsfhifigan/run.sh +143 -0
- egs/vocoder/gan/tfr_enhanced_hifigan/README.md +185 -0
- egs/vocoder/gan/tfr_enhanced_hifigan/exp_config.json +118 -0
- egs/vocoder/gan/tfr_enhanced_hifigan/run.sh +145 -0
- inference.py +6 -2
- modules/__init__.py +0 -0
- modules/activation_functions/__init__.py +7 -0
- modules/activation_functions/gated_activation_unit.py +61 -0
- modules/activation_functions/snake.py +122 -0
- modules/anti_aliasing/__init__.py +8 -0
- modules/anti_aliasing/act.py +35 -0
- modules/anti_aliasing/filter.py +99 -0
- modules/anti_aliasing/resample.py +64 -0
- modules/base/base_module.py +75 -0
- modules/diffusion/__init__.py +7 -0
- modules/diffusion/bidilconv/bidilated_conv.py +102 -0
- modules/diffusion/bidilconv/residual_block.py +73 -0
- modules/diffusion/karras/karras_diffusion.py +979 -0
- modules/diffusion/karras/random_utils.py +177 -0
.gitignore
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
__pycache__
|
2 |
flagged
|
3 |
result
|
|
|
|
|
|
|
4 |
|
5 |
# Developing mode
|
6 |
_*.sh
|
|
|
1 |
__pycache__
|
2 |
flagged
|
3 |
result
|
4 |
+
source_audios
|
5 |
+
ckpts/svc/vocalist_l1_contentvec+whisper/data
|
6 |
+
!ckpts/svc/vocalist_l1_contentvec+whisper/data/vocalist_l1
|
7 |
|
8 |
# Developing mode
|
9 |
_*.sh
|
app.py
CHANGED
@@ -1,5 +1,11 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
3 |
|
4 |
SUPPORTED_TARGET_SINGERS = {
|
5 |
"Adele": "vocalist_l1_Adele",
|
@@ -21,33 +27,58 @@ SUPPORTED_TARGET_SINGERS = {
|
|
21 |
|
22 |
|
23 |
def svc_inference(
|
24 |
-
|
25 |
target_singer,
|
26 |
-
|
27 |
-
key_shift_mode="auto",
|
28 |
key_shift_num=0,
|
|
|
29 |
):
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
demo_inputs = [
|
34 |
gr.Audio(
|
35 |
sources=["upload", "microphone"],
|
36 |
label="Upload (or record) a song you want to listen",
|
|
|
37 |
),
|
38 |
gr.Radio(
|
39 |
choices=list(SUPPORTED_TARGET_SINGERS.keys()),
|
40 |
label="Target Singer",
|
41 |
value="Jian Li 李健",
|
42 |
),
|
43 |
-
gr.Slider(
|
44 |
-
1,
|
45 |
-
1000,
|
46 |
-
value=1000,
|
47 |
-
step=1,
|
48 |
-
label="Diffusion Inference Steps",
|
49 |
-
info="As the step number increases, the synthesis quality will be better while the inference speed will be lower",
|
50 |
-
),
|
51 |
gr.Radio(
|
52 |
choices=["Auto Shift", "Key Shift"],
|
53 |
value="Auto Shift",
|
@@ -62,6 +93,14 @@ demo_inputs = [
|
|
62 |
label="Key Shift Values",
|
63 |
info='How many semitones you want to transpose. This parameter will work only if you choose "Key Shift"',
|
64 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
]
|
66 |
|
67 |
demo_outputs = gr.Audio(label="")
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
|
6 |
+
import gradio as gr
|
7 |
+
import os
|
8 |
+
import inference
|
9 |
|
10 |
SUPPORTED_TARGET_SINGERS = {
|
11 |
"Adele": "vocalist_l1_Adele",
|
|
|
27 |
|
28 |
|
29 |
def svc_inference(
|
30 |
+
source_audio_path,
|
31 |
target_singer,
|
32 |
+
key_shift_mode="Auto Shift",
|
|
|
33 |
key_shift_num=0,
|
34 |
+
diffusion_steps=1000,
|
35 |
):
|
36 |
+
#### Prepare source audio file ####
|
37 |
+
print("source_audio_path: {}".format(source_audio_path))
|
38 |
+
audio_file = source_audio_path.split("/")[-1]
|
39 |
+
audio_name = audio_file.split(".")[0]
|
40 |
+
source_audio_dir = source_audio_path.replace(audio_file, "")
|
41 |
+
|
42 |
+
### Target Singer ###
|
43 |
+
target_singer = SUPPORTED_TARGET_SINGERS[target_singer]
|
44 |
+
|
45 |
+
### Inference ###
|
46 |
+
if key_shift_mode == "Auto Shift":
|
47 |
+
key_shift = "autoshift"
|
48 |
+
else:
|
49 |
+
key_shift = key_shift_num
|
50 |
+
|
51 |
+
args_list = ["--config", "ckpts/svc/vocalist_l1_contentvec+whisper/args.json"]
|
52 |
+
args_list += ["--acoustics_dir", "ckpts/svc/vocalist_l1_contentvec+whisper"]
|
53 |
+
args_list += ["--vocoder_dir", "pretrained/bigvgan"]
|
54 |
+
args_list += ["--target_singer", target_singer]
|
55 |
+
args_list += ["--trans_key", str(key_shift)]
|
56 |
+
args_list += ["--diffusion_inference_steps", str(diffusion_steps)]
|
57 |
+
args_list += ["--source", source_audio_dir]
|
58 |
+
args_list += ["--output_dir", "result"]
|
59 |
+
args_list += ["--log_level", "debug"]
|
60 |
+
|
61 |
+
os.environ["WORK_DIR"] = "./"
|
62 |
+
inference.main(args_list)
|
63 |
+
|
64 |
+
### Display ###
|
65 |
+
result_file = os.path.join(
|
66 |
+
"result/{}/{}_{}.wav".format(audio_name, audio_name, target_singer)
|
67 |
+
)
|
68 |
+
return result_file
|
69 |
|
70 |
|
71 |
demo_inputs = [
|
72 |
gr.Audio(
|
73 |
sources=["upload", "microphone"],
|
74 |
label="Upload (or record) a song you want to listen",
|
75 |
+
type="filepath",
|
76 |
),
|
77 |
gr.Radio(
|
78 |
choices=list(SUPPORTED_TARGET_SINGERS.keys()),
|
79 |
label="Target Singer",
|
80 |
value="Jian Li 李健",
|
81 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
gr.Radio(
|
83 |
choices=["Auto Shift", "Key Shift"],
|
84 |
value="Auto Shift",
|
|
|
93 |
label="Key Shift Values",
|
94 |
info='How many semitones you want to transpose. This parameter will work only if you choose "Key Shift"',
|
95 |
),
|
96 |
+
gr.Slider(
|
97 |
+
1,
|
98 |
+
1000,
|
99 |
+
value=1000,
|
100 |
+
step=1,
|
101 |
+
label="Diffusion Inference Steps",
|
102 |
+
info="As the step number increases, the synthesis quality will be better while the inference speed will be lower",
|
103 |
+
),
|
104 |
]
|
105 |
|
106 |
demo_outputs = gr.Audio(label="")
|
ckpts/svc/vocalist_l1_contentvec+whisper/args.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
"dataset": [
|
4 |
"vocalist_l1",
|
5 |
],
|
@@ -195,6 +195,7 @@
|
|
195 |
"whisper_frameshift": 0.01,
|
196 |
"whisper_model": "medium",
|
197 |
"whisper_model_path": "pretrained/whisper/medium.pt",
|
|
|
198 |
"win_size": 1024,
|
199 |
},
|
200 |
"supported_model_type": [
|
|
|
1 |
{
|
2 |
+
"task_type": "svc",
|
3 |
"dataset": [
|
4 |
"vocalist_l1",
|
5 |
],
|
|
|
195 |
"whisper_frameshift": 0.01,
|
196 |
"whisper_model": "medium",
|
197 |
"whisper_model_path": "pretrained/whisper/medium.pt",
|
198 |
+
"whisper_sample_rate": 16000,
|
199 |
"win_size": 1024,
|
200 |
},
|
201 |
"supported_model_type": [
|
config/audioldm.json
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "config/base.json",
|
3 |
+
"model_type": "AudioLDM",
|
4 |
+
"task_type": "tta",
|
5 |
+
"dataset": [
|
6 |
+
"AudioCaps"
|
7 |
+
],
|
8 |
+
"preprocess": {
|
9 |
+
// feature used for model training
|
10 |
+
"use_spkid": false,
|
11 |
+
"use_uv": false,
|
12 |
+
"use_frame_pitch": false,
|
13 |
+
"use_phone_pitch": false,
|
14 |
+
"use_frame_energy": false,
|
15 |
+
"use_phone_energy": false,
|
16 |
+
"use_mel": false,
|
17 |
+
"use_audio": false,
|
18 |
+
"use_label": false,
|
19 |
+
"use_one_hot": false,
|
20 |
+
"cond_mask_prob": 0.1
|
21 |
+
},
|
22 |
+
// model
|
23 |
+
"model": {
|
24 |
+
"audioldm": {
|
25 |
+
"image_size": 32,
|
26 |
+
"in_channels": 4,
|
27 |
+
"out_channels": 4,
|
28 |
+
"model_channels": 256,
|
29 |
+
"attention_resolutions": [
|
30 |
+
4,
|
31 |
+
2,
|
32 |
+
1
|
33 |
+
],
|
34 |
+
"num_res_blocks": 2,
|
35 |
+
"channel_mult": [
|
36 |
+
1,
|
37 |
+
2,
|
38 |
+
4
|
39 |
+
],
|
40 |
+
"num_heads": 8,
|
41 |
+
"use_spatial_transformer": true,
|
42 |
+
"transformer_depth": 1,
|
43 |
+
"context_dim": 768,
|
44 |
+
"use_checkpoint": true,
|
45 |
+
"legacy": false
|
46 |
+
},
|
47 |
+
"autoencoderkl": {
|
48 |
+
"ch": 128,
|
49 |
+
"ch_mult": [
|
50 |
+
1,
|
51 |
+
1,
|
52 |
+
2,
|
53 |
+
2,
|
54 |
+
4
|
55 |
+
],
|
56 |
+
"num_res_blocks": 2,
|
57 |
+
"in_channels": 1,
|
58 |
+
"z_channels": 4,
|
59 |
+
"out_ch": 1,
|
60 |
+
"double_z": true
|
61 |
+
},
|
62 |
+
"noise_scheduler": {
|
63 |
+
"num_train_timesteps": 1000,
|
64 |
+
"beta_start": 0.00085,
|
65 |
+
"beta_end": 0.012,
|
66 |
+
"beta_schedule": "scaled_linear",
|
67 |
+
"clip_sample": false,
|
68 |
+
"steps_offset": 1,
|
69 |
+
"set_alpha_to_one": false,
|
70 |
+
"skip_prk_steps": true,
|
71 |
+
"prediction_type": "epsilon"
|
72 |
+
}
|
73 |
+
},
|
74 |
+
// train
|
75 |
+
"train": {
|
76 |
+
"lronPlateau": {
|
77 |
+
"factor": 0.9,
|
78 |
+
"patience": 100,
|
79 |
+
"min_lr": 4.0e-5,
|
80 |
+
"verbose": true
|
81 |
+
},
|
82 |
+
"adam": {
|
83 |
+
"lr": 5.0e-5,
|
84 |
+
"betas": [
|
85 |
+
0.9,
|
86 |
+
0.999
|
87 |
+
],
|
88 |
+
"weight_decay": 1.0e-2,
|
89 |
+
"eps": 1.0e-8
|
90 |
+
}
|
91 |
+
}
|
92 |
+
}
|
config/autoencoderkl.json
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "config/base.json",
|
3 |
+
"model_type": "AutoencoderKL",
|
4 |
+
"task_type": "tta",
|
5 |
+
"dataset": [
|
6 |
+
"AudioCaps"
|
7 |
+
],
|
8 |
+
"preprocess": {
|
9 |
+
// feature used for model training
|
10 |
+
"use_spkid": false,
|
11 |
+
"use_uv": false,
|
12 |
+
"use_frame_pitch": false,
|
13 |
+
"use_phone_pitch": false,
|
14 |
+
"use_frame_energy": false,
|
15 |
+
"use_phone_energy": false,
|
16 |
+
"use_mel": false,
|
17 |
+
"use_audio": false,
|
18 |
+
"use_label": false,
|
19 |
+
"use_one_hot": false
|
20 |
+
},
|
21 |
+
// model
|
22 |
+
"model": {
|
23 |
+
"autoencoderkl": {
|
24 |
+
"ch": 128,
|
25 |
+
"ch_mult": [
|
26 |
+
1,
|
27 |
+
1,
|
28 |
+
2,
|
29 |
+
2,
|
30 |
+
4
|
31 |
+
],
|
32 |
+
"num_res_blocks": 2,
|
33 |
+
"in_channels": 1,
|
34 |
+
"z_channels": 4,
|
35 |
+
"out_ch": 1,
|
36 |
+
"double_z": true
|
37 |
+
},
|
38 |
+
"loss": {
|
39 |
+
"kl_weight": 1e-8,
|
40 |
+
"disc_weight": 0.5,
|
41 |
+
"disc_factor": 1.0,
|
42 |
+
"logvar_init": 0.0,
|
43 |
+
"min_adapt_d_weight": 0.0,
|
44 |
+
"max_adapt_d_weight": 10.0,
|
45 |
+
"disc_start": 50001,
|
46 |
+
"disc_in_channels": 1,
|
47 |
+
"disc_num_layers": 3,
|
48 |
+
"use_actnorm": false
|
49 |
+
}
|
50 |
+
},
|
51 |
+
// train
|
52 |
+
"train": {
|
53 |
+
"lronPlateau": {
|
54 |
+
"factor": 0.9,
|
55 |
+
"patience": 100,
|
56 |
+
"min_lr": 4.0e-5,
|
57 |
+
"verbose": true
|
58 |
+
},
|
59 |
+
"adam": {
|
60 |
+
"lr": 4.0e-4,
|
61 |
+
"betas": [
|
62 |
+
0.9,
|
63 |
+
0.999
|
64 |
+
],
|
65 |
+
"weight_decay": 1.0e-2,
|
66 |
+
"eps": 1.0e-8
|
67 |
+
}
|
68 |
+
}
|
69 |
+
}
|
config/base.json
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"supported_model_type": [
|
3 |
+
"GANVocoder",
|
4 |
+
"Fastspeech2",
|
5 |
+
"DiffSVC",
|
6 |
+
"Transformer",
|
7 |
+
"EDM",
|
8 |
+
"CD"
|
9 |
+
],
|
10 |
+
"task_type": "",
|
11 |
+
"dataset": [],
|
12 |
+
"use_custom_dataset": false,
|
13 |
+
"preprocess": {
|
14 |
+
"phone_extractor": "espeak", // "espeak, pypinyin, pypinyin_initials_finals, lexicon"
|
15 |
+
// trim audio silence
|
16 |
+
"data_augment": false,
|
17 |
+
"trim_silence": false,
|
18 |
+
"num_silent_frames": 8,
|
19 |
+
"trim_fft_size": 512, // fft size used in trimming
|
20 |
+
"trim_hop_size": 128, // hop size used in trimming
|
21 |
+
"trim_top_db": 30, // top db used in trimming sensitive to each dataset
|
22 |
+
// acoustic features
|
23 |
+
"extract_mel": false,
|
24 |
+
"mel_extract_mode": "",
|
25 |
+
"extract_linear_spec": false,
|
26 |
+
"extract_mcep": false,
|
27 |
+
"extract_pitch": false,
|
28 |
+
"extract_acoustic_token": false,
|
29 |
+
"pitch_remove_outlier": false,
|
30 |
+
"extract_uv": false,
|
31 |
+
"pitch_norm": false,
|
32 |
+
"extract_audio": false,
|
33 |
+
"extract_label": false,
|
34 |
+
"pitch_extractor": "parselmouth", // pyin, dio, pyworld, pyreaper, parselmouth, CWT (Continuous Wavelet Transform)
|
35 |
+
"extract_energy": false,
|
36 |
+
"energy_remove_outlier": false,
|
37 |
+
"energy_norm": false,
|
38 |
+
"energy_extract_mode": "from_mel",
|
39 |
+
"extract_duration": false,
|
40 |
+
"extract_amplitude_phase": false,
|
41 |
+
"mel_min_max_norm": false,
|
42 |
+
// lingusitic features
|
43 |
+
"extract_phone": false,
|
44 |
+
"lexicon_path": "./text/lexicon/librispeech-lexicon.txt",
|
45 |
+
// content features
|
46 |
+
"extract_whisper_feature": false,
|
47 |
+
"extract_contentvec_feature": false,
|
48 |
+
"extract_mert_feature": false,
|
49 |
+
"extract_wenet_feature": false,
|
50 |
+
// Settings for data preprocessing
|
51 |
+
"n_mel": 80,
|
52 |
+
"win_size": 480,
|
53 |
+
"hop_size": 120,
|
54 |
+
"sample_rate": 24000,
|
55 |
+
"n_fft": 1024,
|
56 |
+
"fmin": 0,
|
57 |
+
"fmax": 12000,
|
58 |
+
"min_level_db": -115,
|
59 |
+
"ref_level_db": 20,
|
60 |
+
"bits": 8,
|
61 |
+
// Directory names of processed data or extracted features
|
62 |
+
"processed_dir": "processed_data",
|
63 |
+
"trimmed_wav_dir": "trimmed_wavs", // directory name of silence trimed wav
|
64 |
+
"raw_data": "raw_data",
|
65 |
+
"phone_dir": "phones",
|
66 |
+
"wav_dir": "wavs", // directory name of processed wav (such as downsampled waveform)
|
67 |
+
"audio_dir": "audios",
|
68 |
+
"log_amplitude_dir": "log_amplitudes",
|
69 |
+
"phase_dir": "phases",
|
70 |
+
"real_dir": "reals",
|
71 |
+
"imaginary_dir": "imaginarys",
|
72 |
+
"label_dir": "labels",
|
73 |
+
"linear_dir": "linears",
|
74 |
+
"mel_dir": "mels", // directory name of extraced mel features
|
75 |
+
"mcep_dir": "mcep", // directory name of extraced mcep features
|
76 |
+
"dur_dir": "durs",
|
77 |
+
"symbols_dict": "symbols.dict",
|
78 |
+
"lab_dir": "labs", // directory name of extraced label features
|
79 |
+
"wenet_dir": "wenet", // directory name of extraced wenet features
|
80 |
+
"contentvec_dir": "contentvec", // directory name of extraced wenet features
|
81 |
+
"pitch_dir": "pitches", // directory name of extraced pitch features
|
82 |
+
"energy_dir": "energys", // directory name of extracted energy features
|
83 |
+
"phone_pitch_dir": "phone_pitches", // directory name of extraced pitch features
|
84 |
+
"phone_energy_dir": "phone_energys", // directory name of extracted energy features
|
85 |
+
"uv_dir": "uvs", // directory name of extracted unvoiced features
|
86 |
+
"duration_dir": "duration", // ground-truth duration file
|
87 |
+
"phone_seq_file": "phone_seq_file", // phoneme sequence file
|
88 |
+
"file_lst": "file.lst",
|
89 |
+
"train_file": "train.json", // training set, the json file contains detailed information about the dataset, including dataset name, utterance id, duration of the utterance
|
90 |
+
"valid_file": "valid.json", // validattion set
|
91 |
+
"spk2id": "spk2id.json", // used for multi-speaker dataset
|
92 |
+
"utt2spk": "utt2spk", // used for multi-speaker dataset
|
93 |
+
"emo2id": "emo2id.json", // used for multi-emotion dataset
|
94 |
+
"utt2emo": "utt2emo", // used for multi-emotion dataset
|
95 |
+
// Features used for model training
|
96 |
+
"use_text": false,
|
97 |
+
"use_phone": false,
|
98 |
+
"use_phn_seq": false,
|
99 |
+
"use_lab": false,
|
100 |
+
"use_linear": false,
|
101 |
+
"use_mel": false,
|
102 |
+
"use_min_max_norm_mel": false,
|
103 |
+
"use_wav": false,
|
104 |
+
"use_phone_pitch": false,
|
105 |
+
"use_log_scale_pitch": false,
|
106 |
+
"use_phone_energy": false,
|
107 |
+
"use_phone_duration": false,
|
108 |
+
"use_log_scale_energy": false,
|
109 |
+
"use_wenet": false,
|
110 |
+
"use_dur": false,
|
111 |
+
"use_spkid": false, // True: use speaker id for multi-speaker dataset
|
112 |
+
"use_emoid": false, // True: use emotion id for multi-emotion dataset
|
113 |
+
"use_frame_pitch": false,
|
114 |
+
"use_uv": false,
|
115 |
+
"use_frame_energy": false,
|
116 |
+
"use_frame_duration": false,
|
117 |
+
"use_audio": false,
|
118 |
+
"use_label": false,
|
119 |
+
"use_one_hot": false,
|
120 |
+
"use_amplitude_phase": false,
|
121 |
+
"data_augment": false,
|
122 |
+
"align_mel_duration": false
|
123 |
+
},
|
124 |
+
"train": {
|
125 |
+
"ddp": true,
|
126 |
+
"random_seed": 970227,
|
127 |
+
"batch_size": 16,
|
128 |
+
"max_steps": 1000000,
|
129 |
+
// Trackers
|
130 |
+
"tracker": [
|
131 |
+
"tensorboard"
|
132 |
+
// "wandb",
|
133 |
+
// "cometml",
|
134 |
+
// "mlflow",
|
135 |
+
],
|
136 |
+
"max_epoch": -1,
|
137 |
+
// -1 means no limit
|
138 |
+
"save_checkpoint_stride": [
|
139 |
+
5,
|
140 |
+
20
|
141 |
+
],
|
142 |
+
// unit is epoch
|
143 |
+
"keep_last": [
|
144 |
+
3,
|
145 |
+
-1
|
146 |
+
],
|
147 |
+
// -1 means infinite, if one number will broadcast
|
148 |
+
"run_eval": [
|
149 |
+
false,
|
150 |
+
true
|
151 |
+
],
|
152 |
+
// if one number will broadcast
|
153 |
+
// Fix the random seed
|
154 |
+
"random_seed": 10086,
|
155 |
+
// Optimizer
|
156 |
+
"optimizer": "AdamW",
|
157 |
+
"adamw": {
|
158 |
+
"lr": 4.0e-4
|
159 |
+
// nn model lr
|
160 |
+
},
|
161 |
+
// LR Scheduler
|
162 |
+
"scheduler": "ReduceLROnPlateau",
|
163 |
+
"reducelronplateau": {
|
164 |
+
"factor": 0.8,
|
165 |
+
"patience": 10,
|
166 |
+
// unit is epoch
|
167 |
+
"min_lr": 1.0e-4
|
168 |
+
},
|
169 |
+
// Batchsampler
|
170 |
+
"sampler": {
|
171 |
+
"holistic_shuffle": true,
|
172 |
+
"drop_last": true
|
173 |
+
},
|
174 |
+
// Dataloader
|
175 |
+
"dataloader": {
|
176 |
+
"num_worker": 32,
|
177 |
+
"pin_memory": true
|
178 |
+
},
|
179 |
+
"gradient_accumulation_step": 1,
|
180 |
+
"total_training_steps": 50000,
|
181 |
+
"save_summary_steps": 500,
|
182 |
+
"save_checkpoints_steps": 10000,
|
183 |
+
"valid_interval": 10000,
|
184 |
+
"keep_checkpoint_max": 5,
|
185 |
+
"multi_speaker_training": false, // True: train multi-speaker model; False: training single-speaker model;
|
186 |
+
"max_epoch": -1,
|
187 |
+
// -1 means no limit
|
188 |
+
"save_checkpoint_stride": [
|
189 |
+
5,
|
190 |
+
20
|
191 |
+
],
|
192 |
+
// unit is epoch
|
193 |
+
"keep_last": [
|
194 |
+
3,
|
195 |
+
-1
|
196 |
+
],
|
197 |
+
// -1 means infinite, if one number will broadcast
|
198 |
+
"run_eval": [
|
199 |
+
false,
|
200 |
+
true
|
201 |
+
],
|
202 |
+
// Batchsampler
|
203 |
+
"sampler": {
|
204 |
+
"holistic_shuffle": true,
|
205 |
+
"drop_last": true
|
206 |
+
},
|
207 |
+
// Dataloader
|
208 |
+
"dataloader": {
|
209 |
+
"num_worker": 32,
|
210 |
+
"pin_memory": true
|
211 |
+
},
|
212 |
+
// Trackers
|
213 |
+
"tracker": [
|
214 |
+
"tensorboard"
|
215 |
+
// "wandb",
|
216 |
+
// "cometml",
|
217 |
+
// "mlflow",
|
218 |
+
],
|
219 |
+
},
|
220 |
+
}
|
config/comosvc.json
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "config/base.json",
|
3 |
+
"model_type": "DiffComoSVC",
|
4 |
+
"task_type": "svc",
|
5 |
+
"use_custom_dataset": false,
|
6 |
+
"preprocess": {
|
7 |
+
// data augmentations
|
8 |
+
"use_pitch_shift": false,
|
9 |
+
"use_formant_shift": false,
|
10 |
+
"use_time_stretch": false,
|
11 |
+
"use_equalizer": false,
|
12 |
+
// acoustic features
|
13 |
+
"extract_mel": true,
|
14 |
+
"mel_min_max_norm": true,
|
15 |
+
"extract_pitch": true,
|
16 |
+
"pitch_extractor": "parselmouth",
|
17 |
+
"extract_uv": true,
|
18 |
+
"extract_energy": true,
|
19 |
+
// content features
|
20 |
+
"extract_whisper_feature": false,
|
21 |
+
"whisper_sample_rate": 16000,
|
22 |
+
"extract_contentvec_feature": false,
|
23 |
+
"contentvec_sample_rate": 16000,
|
24 |
+
"extract_wenet_feature": false,
|
25 |
+
"wenet_sample_rate": 16000,
|
26 |
+
"extract_mert_feature": false,
|
27 |
+
"mert_sample_rate": 16000,
|
28 |
+
// Default config for whisper
|
29 |
+
"whisper_frameshift": 0.01,
|
30 |
+
"whisper_downsample_rate": 2,
|
31 |
+
// Default config for content vector
|
32 |
+
"contentvec_frameshift": 0.02,
|
33 |
+
// Default config for mert
|
34 |
+
"mert_model": "m-a-p/MERT-v1-330M",
|
35 |
+
"mert_feature_layer": -1,
|
36 |
+
"mert_hop_size": 320,
|
37 |
+
// 24k
|
38 |
+
"mert_frameshit": 0.01333,
|
39 |
+
// 10ms
|
40 |
+
"wenet_frameshift": 0.01,
|
41 |
+
// wenetspeech is 4, gigaspeech is 6
|
42 |
+
"wenet_downsample_rate": 4,
|
43 |
+
// Default config
|
44 |
+
"n_mel": 100,
|
45 |
+
"win_size": 1024,
|
46 |
+
// todo
|
47 |
+
"hop_size": 256,
|
48 |
+
"sample_rate": 24000,
|
49 |
+
"n_fft": 1024,
|
50 |
+
// todo
|
51 |
+
"fmin": 0,
|
52 |
+
"fmax": 12000,
|
53 |
+
// todo
|
54 |
+
"f0_min": 50,
|
55 |
+
// ~C2
|
56 |
+
"f0_max": 1100,
|
57 |
+
//1100, // ~C6(1100), ~G5(800)
|
58 |
+
"pitch_bin": 256,
|
59 |
+
"pitch_max": 1100.0,
|
60 |
+
"pitch_min": 50.0,
|
61 |
+
"is_label": true,
|
62 |
+
"is_mu_law": true,
|
63 |
+
"bits": 8,
|
64 |
+
"mel_min_max_stats_dir": "mel_min_max_stats",
|
65 |
+
"whisper_dir": "whisper",
|
66 |
+
"contentvec_dir": "contentvec",
|
67 |
+
"wenet_dir": "wenet",
|
68 |
+
"mert_dir": "mert",
|
69 |
+
// Extract content features using dataloader
|
70 |
+
"pin_memory": true,
|
71 |
+
"num_workers": 8,
|
72 |
+
"content_feature_batch_size": 16,
|
73 |
+
// Features used for model training
|
74 |
+
"use_mel": true,
|
75 |
+
"use_min_max_norm_mel": true,
|
76 |
+
"use_frame_pitch": true,
|
77 |
+
"use_uv": true,
|
78 |
+
"use_frame_energy": true,
|
79 |
+
"use_log_scale_pitch": false,
|
80 |
+
"use_log_scale_energy": false,
|
81 |
+
"use_spkid": true,
|
82 |
+
// Meta file
|
83 |
+
"train_file": "train.json",
|
84 |
+
"valid_file": "test.json",
|
85 |
+
"spk2id": "singers.json",
|
86 |
+
"utt2spk": "utt2singer"
|
87 |
+
},
|
88 |
+
"model": {
|
89 |
+
"teacher_model_path": "[Your Teacher Model Path].bin",
|
90 |
+
"condition_encoder": {
|
91 |
+
"merge_mode": "add",
|
92 |
+
"input_melody_dim": 1,
|
93 |
+
"use_log_f0": true,
|
94 |
+
"n_bins_melody": 256,
|
95 |
+
//# Quantization (0 for not quantization)
|
96 |
+
"output_melody_dim": 384,
|
97 |
+
"input_loudness_dim": 1,
|
98 |
+
"use_log_loudness": true,
|
99 |
+
"n_bins_loudness": 256,
|
100 |
+
"output_loudness_dim": 384,
|
101 |
+
"use_whisper": false,
|
102 |
+
"use_contentvec": false,
|
103 |
+
"use_wenet": false,
|
104 |
+
"use_mert": false,
|
105 |
+
"whisper_dim": 1024,
|
106 |
+
"contentvec_dim": 256,
|
107 |
+
"mert_dim": 256,
|
108 |
+
"wenet_dim": 512,
|
109 |
+
"content_encoder_dim": 384,
|
110 |
+
"output_singer_dim": 384,
|
111 |
+
"singer_table_size": 512,
|
112 |
+
"output_content_dim": 384,
|
113 |
+
"use_spkid": true
|
114 |
+
},
|
115 |
+
"comosvc": {
|
116 |
+
"distill": false,
|
117 |
+
// conformer encoder
|
118 |
+
"input_dim": 384,
|
119 |
+
"output_dim": 100,
|
120 |
+
"n_heads": 2,
|
121 |
+
"n_layers": 6,
|
122 |
+
"filter_channels": 512,
|
123 |
+
"dropout": 0.1,
|
124 |
+
// karras diffusion
|
125 |
+
"P_mean": -1.2,
|
126 |
+
"P_std": 1.2,
|
127 |
+
"sigma_data": 0.5,
|
128 |
+
"sigma_min": 0.002,
|
129 |
+
"sigma_max": 80,
|
130 |
+
"rho": 7,
|
131 |
+
"n_timesteps": 40,
|
132 |
+
},
|
133 |
+
"diffusion": {
|
134 |
+
// Diffusion steps encoder
|
135 |
+
"step_encoder": {
|
136 |
+
"dim_raw_embedding": 128,
|
137 |
+
"dim_hidden_layer": 512,
|
138 |
+
"activation": "SiLU",
|
139 |
+
"num_layer": 2,
|
140 |
+
"max_period": 10000
|
141 |
+
},
|
142 |
+
// Diffusion decoder
|
143 |
+
"model_type": "bidilconv",
|
144 |
+
// bidilconv, unet2d, TODO: unet1d
|
145 |
+
"bidilconv": {
|
146 |
+
"base_channel": 384,
|
147 |
+
"n_res_block": 20,
|
148 |
+
"conv_kernel_size": 3,
|
149 |
+
"dilation_cycle_length": 4,
|
150 |
+
// specially, 1 means no dilation
|
151 |
+
"conditioner_size": 100
|
152 |
+
}
|
153 |
+
},
|
154 |
+
},
|
155 |
+
"train": {
|
156 |
+
// Basic settings
|
157 |
+
"fast_steps": 0,
|
158 |
+
"batch_size": 32,
|
159 |
+
"gradient_accumulation_step": 1,
|
160 |
+
"max_epoch": -1,
|
161 |
+
// -1 means no limit
|
162 |
+
"save_checkpoint_stride": [
|
163 |
+
10,
|
164 |
+
100
|
165 |
+
],
|
166 |
+
// unit is epoch
|
167 |
+
"keep_last": [
|
168 |
+
3,
|
169 |
+
-1
|
170 |
+
],
|
171 |
+
// -1 means infinite, if one number will broadcast
|
172 |
+
"run_eval": [
|
173 |
+
false,
|
174 |
+
true
|
175 |
+
],
|
176 |
+
// if one number will broadcast
|
177 |
+
// Fix the random seed
|
178 |
+
"random_seed": 10086,
|
179 |
+
// Batchsampler
|
180 |
+
"sampler": {
|
181 |
+
"holistic_shuffle": true,
|
182 |
+
"drop_last": true
|
183 |
+
},
|
184 |
+
// Dataloader
|
185 |
+
"dataloader": {
|
186 |
+
"num_worker": 32,
|
187 |
+
"pin_memory": true
|
188 |
+
},
|
189 |
+
// Trackers
|
190 |
+
"tracker": [
|
191 |
+
"tensorboard"
|
192 |
+
// "wandb",
|
193 |
+
// "cometml",
|
194 |
+
// "mlflow",
|
195 |
+
],
|
196 |
+
// Optimizer
|
197 |
+
"optimizer": "AdamW",
|
198 |
+
"adamw": {
|
199 |
+
"lr": 4.0e-4
|
200 |
+
// nn model lr
|
201 |
+
},
|
202 |
+
// LR Scheduler
|
203 |
+
"scheduler": "ReduceLROnPlateau",
|
204 |
+
"reducelronplateau": {
|
205 |
+
"factor": 0.8,
|
206 |
+
"patience": 10,
|
207 |
+
// unit is epoch
|
208 |
+
"min_lr": 1.0e-4
|
209 |
+
}
|
210 |
+
},
|
211 |
+
"inference": {
|
212 |
+
"comosvc": {
|
213 |
+
"inference_steps": 40
|
214 |
+
}
|
215 |
+
}
|
216 |
+
}
|
config/diffusion.json
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
// FIXME: THESE ARE LEGACY
|
3 |
+
"base_config": "config/base.json",
|
4 |
+
"model_type": "diffusion",
|
5 |
+
"task_type": "svc",
|
6 |
+
"use_custom_dataset": false,
|
7 |
+
"preprocess": {
|
8 |
+
// data augmentations
|
9 |
+
"use_pitch_shift": false,
|
10 |
+
"use_formant_shift": false,
|
11 |
+
"use_time_stretch": false,
|
12 |
+
"use_equalizer": false,
|
13 |
+
// acoustic features
|
14 |
+
"extract_mel": true,
|
15 |
+
"mel_min_max_norm": true,
|
16 |
+
"extract_pitch": true,
|
17 |
+
"pitch_extractor": "parselmouth",
|
18 |
+
"extract_uv": true,
|
19 |
+
"extract_energy": true,
|
20 |
+
// content features
|
21 |
+
"extract_whisper_feature": false,
|
22 |
+
"whisper_sample_rate": 16000,
|
23 |
+
"extract_contentvec_feature": false,
|
24 |
+
"contentvec_sample_rate": 16000,
|
25 |
+
"extract_wenet_feature": false,
|
26 |
+
"wenet_sample_rate": 16000,
|
27 |
+
"extract_mert_feature": false,
|
28 |
+
"mert_sample_rate": 16000,
|
29 |
+
// Default config for whisper
|
30 |
+
"whisper_frameshift": 0.01,
|
31 |
+
"whisper_downsample_rate": 2,
|
32 |
+
// Default config for content vector
|
33 |
+
"contentvec_frameshift": 0.02,
|
34 |
+
// Default config for mert
|
35 |
+
"mert_model": "m-a-p/MERT-v1-330M",
|
36 |
+
"mert_feature_layer": -1,
|
37 |
+
"mert_hop_size": 320,
|
38 |
+
// 24k
|
39 |
+
"mert_frameshit": 0.01333,
|
40 |
+
// 10ms
|
41 |
+
"wenet_frameshift": 0.01,
|
42 |
+
// wenetspeech is 4, gigaspeech is 6
|
43 |
+
"wenet_downsample_rate": 4,
|
44 |
+
// Default config
|
45 |
+
"n_mel": 100,
|
46 |
+
"win_size": 1024,
|
47 |
+
// todo
|
48 |
+
"hop_size": 256,
|
49 |
+
"sample_rate": 24000,
|
50 |
+
"n_fft": 1024,
|
51 |
+
// todo
|
52 |
+
"fmin": 0,
|
53 |
+
"fmax": 12000,
|
54 |
+
// todo
|
55 |
+
"f0_min": 50,
|
56 |
+
// ~C2
|
57 |
+
"f0_max": 1100,
|
58 |
+
//1100, // ~C6(1100), ~G5(800)
|
59 |
+
"pitch_bin": 256,
|
60 |
+
"pitch_max": 1100.0,
|
61 |
+
"pitch_min": 50.0,
|
62 |
+
"is_label": true,
|
63 |
+
"is_mu_law": true,
|
64 |
+
"bits": 8,
|
65 |
+
"mel_min_max_stats_dir": "mel_min_max_stats",
|
66 |
+
"whisper_dir": "whisper",
|
67 |
+
"contentvec_dir": "contentvec",
|
68 |
+
"wenet_dir": "wenet",
|
69 |
+
"mert_dir": "mert",
|
70 |
+
// Extract content features using dataloader
|
71 |
+
"pin_memory": true,
|
72 |
+
"num_workers": 8,
|
73 |
+
"content_feature_batch_size": 16,
|
74 |
+
// Features used for model training
|
75 |
+
"use_mel": true,
|
76 |
+
"use_min_max_norm_mel": true,
|
77 |
+
"use_frame_pitch": true,
|
78 |
+
"use_uv": true,
|
79 |
+
"use_frame_energy": true,
|
80 |
+
"use_log_scale_pitch": false,
|
81 |
+
"use_log_scale_energy": false,
|
82 |
+
"use_spkid": true,
|
83 |
+
// Meta file
|
84 |
+
"train_file": "train.json",
|
85 |
+
"valid_file": "test.json",
|
86 |
+
"spk2id": "singers.json",
|
87 |
+
"utt2spk": "utt2singer"
|
88 |
+
},
|
89 |
+
"model": {
|
90 |
+
"condition_encoder": {
|
91 |
+
"merge_mode": "add",
|
92 |
+
"input_melody_dim": 1,
|
93 |
+
"use_log_f0": true,
|
94 |
+
"n_bins_melody": 256,
|
95 |
+
//# Quantization (0 for not quantization)
|
96 |
+
"output_melody_dim": 384,
|
97 |
+
"input_loudness_dim": 1,
|
98 |
+
"use_log_loudness": true,
|
99 |
+
"n_bins_loudness": 256,
|
100 |
+
"output_loudness_dim": 384,
|
101 |
+
"use_whisper": false,
|
102 |
+
"use_contentvec": false,
|
103 |
+
"use_wenet": false,
|
104 |
+
"use_mert": false,
|
105 |
+
"whisper_dim": 1024,
|
106 |
+
"contentvec_dim": 256,
|
107 |
+
"mert_dim": 256,
|
108 |
+
"wenet_dim": 512,
|
109 |
+
"content_encoder_dim": 384,
|
110 |
+
"output_singer_dim": 384,
|
111 |
+
"singer_table_size": 512,
|
112 |
+
"output_content_dim": 384,
|
113 |
+
"use_spkid": true
|
114 |
+
},
|
115 |
+
// FIXME: FOLLOWING ARE NEW!!
|
116 |
+
"diffusion": {
|
117 |
+
"scheduler": "ddpm",
|
118 |
+
"scheduler_settings": {
|
119 |
+
"num_train_timesteps": 1000,
|
120 |
+
"beta_start": 1.0e-4,
|
121 |
+
"beta_end": 0.02,
|
122 |
+
"beta_schedule": "linear"
|
123 |
+
},
|
124 |
+
// Diffusion steps encoder
|
125 |
+
"step_encoder": {
|
126 |
+
"dim_raw_embedding": 128,
|
127 |
+
"dim_hidden_layer": 512,
|
128 |
+
"activation": "SiLU",
|
129 |
+
"num_layer": 2,
|
130 |
+
"max_period": 10000
|
131 |
+
},
|
132 |
+
// Diffusion decoder
|
133 |
+
"model_type": "bidilconv",
|
134 |
+
// bidilconv, unet2d, TODO: unet1d
|
135 |
+
"bidilconv": {
|
136 |
+
"base_channel": 384,
|
137 |
+
"n_res_block": 20,
|
138 |
+
"conv_kernel_size": 3,
|
139 |
+
"dilation_cycle_length": 4,
|
140 |
+
// specially, 1 means no dilation
|
141 |
+
"conditioner_size": 384
|
142 |
+
},
|
143 |
+
"unet2d": {
|
144 |
+
"in_channels": 1,
|
145 |
+
"out_channels": 1,
|
146 |
+
"down_block_types": [
|
147 |
+
"CrossAttnDownBlock2D",
|
148 |
+
"CrossAttnDownBlock2D",
|
149 |
+
"CrossAttnDownBlock2D",
|
150 |
+
"DownBlock2D"
|
151 |
+
],
|
152 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
153 |
+
"up_block_types": [
|
154 |
+
"UpBlock2D",
|
155 |
+
"CrossAttnUpBlock2D",
|
156 |
+
"CrossAttnUpBlock2D",
|
157 |
+
"CrossAttnUpBlock2D"
|
158 |
+
],
|
159 |
+
"only_cross_attention": false
|
160 |
+
}
|
161 |
+
}
|
162 |
+
},
|
163 |
+
// FIXME: FOLLOWING ARE NEW!!
|
164 |
+
"train": {
|
165 |
+
// Basic settings
|
166 |
+
"batch_size": 64,
|
167 |
+
"gradient_accumulation_step": 1,
|
168 |
+
"max_epoch": -1,
|
169 |
+
// -1 means no limit
|
170 |
+
"save_checkpoint_stride": [
|
171 |
+
5,
|
172 |
+
20
|
173 |
+
],
|
174 |
+
// unit is epoch
|
175 |
+
"keep_last": [
|
176 |
+
3,
|
177 |
+
-1
|
178 |
+
],
|
179 |
+
// -1 means infinite, if one number will broadcast
|
180 |
+
"run_eval": [
|
181 |
+
false,
|
182 |
+
true
|
183 |
+
],
|
184 |
+
// if one number will broadcast
|
185 |
+
// Fix the random seed
|
186 |
+
"random_seed": 10086,
|
187 |
+
// Batchsampler
|
188 |
+
"sampler": {
|
189 |
+
"holistic_shuffle": true,
|
190 |
+
"drop_last": true
|
191 |
+
},
|
192 |
+
// Dataloader
|
193 |
+
"dataloader": {
|
194 |
+
"num_worker": 32,
|
195 |
+
"pin_memory": true
|
196 |
+
},
|
197 |
+
// Trackers
|
198 |
+
"tracker": [
|
199 |
+
"tensorboard"
|
200 |
+
// "wandb",
|
201 |
+
// "cometml",
|
202 |
+
// "mlflow",
|
203 |
+
],
|
204 |
+
// Optimizer
|
205 |
+
"optimizer": "AdamW",
|
206 |
+
"adamw": {
|
207 |
+
"lr": 4.0e-4
|
208 |
+
// nn model lr
|
209 |
+
},
|
210 |
+
// LR Scheduler
|
211 |
+
"scheduler": "ReduceLROnPlateau",
|
212 |
+
"reducelronplateau": {
|
213 |
+
"factor": 0.8,
|
214 |
+
"patience": 10,
|
215 |
+
// unit is epoch
|
216 |
+
"min_lr": 1.0e-4
|
217 |
+
}
|
218 |
+
},
|
219 |
+
"inference": {
|
220 |
+
"diffusion": {
|
221 |
+
"scheduler": "pndm",
|
222 |
+
"scheduler_settings": {
|
223 |
+
"num_inference_timesteps": 1000
|
224 |
+
}
|
225 |
+
}
|
226 |
+
}
|
227 |
+
}
|
config/fs2.json
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "config/tts.json",
|
3 |
+
"model_type": "FastSpeech2",
|
4 |
+
"task_type": "tts",
|
5 |
+
"dataset": ["LJSpeech"],
|
6 |
+
"preprocess": {
|
7 |
+
// acoustic features
|
8 |
+
"extract_audio": true,
|
9 |
+
"extract_mel": true,
|
10 |
+
"mel_extract_mode": "taco",
|
11 |
+
"mel_min_max_norm": false,
|
12 |
+
"extract_pitch": true,
|
13 |
+
"extract_uv": false,
|
14 |
+
"pitch_extractor": "dio",
|
15 |
+
"extract_energy": true,
|
16 |
+
"energy_extract_mode": "from_tacotron_stft",
|
17 |
+
"extract_duration": true,
|
18 |
+
"use_phone": true,
|
19 |
+
"pitch_norm": true,
|
20 |
+
"energy_norm": true,
|
21 |
+
"pitch_remove_outlier": true,
|
22 |
+
"energy_remove_outlier": true,
|
23 |
+
|
24 |
+
// Default config
|
25 |
+
"n_mel": 80,
|
26 |
+
"win_size": 1024, // todo
|
27 |
+
"hop_size": 256,
|
28 |
+
"sample_rate": 22050,
|
29 |
+
"n_fft": 1024, // todo
|
30 |
+
"fmin": 0,
|
31 |
+
"fmax": 8000, // todo
|
32 |
+
"raw_data": "raw_data",
|
33 |
+
"text_cleaners": ["english_cleaners"],
|
34 |
+
"f0_min": 71, // ~C2
|
35 |
+
"f0_max": 800, //1100, // ~C6(1100), ~G5(800)
|
36 |
+
"pitch_bin": 256,
|
37 |
+
"pitch_max": 1100.0,
|
38 |
+
"pitch_min": 50.0,
|
39 |
+
"is_label": true,
|
40 |
+
"is_mu_law": true,
|
41 |
+
"bits": 8,
|
42 |
+
|
43 |
+
"mel_min_max_stats_dir": "mel_min_max_stats",
|
44 |
+
"whisper_dir": "whisper",
|
45 |
+
"content_vector_dir": "content_vector",
|
46 |
+
"wenet_dir": "wenet",
|
47 |
+
"mert_dir": "mert",
|
48 |
+
"spk2id":"spk2id.json",
|
49 |
+
"utt2spk":"utt2spk",
|
50 |
+
|
51 |
+
// Features used for model training
|
52 |
+
"use_mel": true,
|
53 |
+
"use_min_max_norm_mel": false,
|
54 |
+
"use_frame_pitch": false,
|
55 |
+
"use_frame_energy": false,
|
56 |
+
"use_phone_pitch": true,
|
57 |
+
"use_phone_energy": true,
|
58 |
+
"use_log_scale_pitch": false,
|
59 |
+
"use_log_scale_energy": false,
|
60 |
+
"use_spkid": false,
|
61 |
+
"align_mel_duration": true,
|
62 |
+
"text_cleaners": ["english_cleaners"]
|
63 |
+
},
|
64 |
+
"model": {
|
65 |
+
// Settings for transformer
|
66 |
+
"transformer": {
|
67 |
+
"encoder_layer": 4,
|
68 |
+
"encoder_head": 2,
|
69 |
+
"encoder_hidden": 256,
|
70 |
+
"decoder_layer": 6,
|
71 |
+
"decoder_head": 2,
|
72 |
+
"decoder_hidden": 256,
|
73 |
+
"conv_filter_size": 1024,
|
74 |
+
"conv_kernel_size": [9, 1],
|
75 |
+
"encoder_dropout": 0.2,
|
76 |
+
"decoder_dropout": 0.2
|
77 |
+
},
|
78 |
+
|
79 |
+
// Settings for variance_predictor
|
80 |
+
"variance_predictor":{
|
81 |
+
"filter_size": 256,
|
82 |
+
"kernel_size": 3,
|
83 |
+
"dropout": 0.5
|
84 |
+
},
|
85 |
+
"variance_embedding":{
|
86 |
+
"pitch_quantization": "linear", // support 'linear' or 'log', 'log' is allowed only if the pitch values are not normalized during preprocessing
|
87 |
+
"energy_quantization": "linear", // support 'linear' or 'log', 'log' is allowed only if the energy values are not normalized during preprocessing
|
88 |
+
"n_bins": 256
|
89 |
+
},
|
90 |
+
"max_seq_len": 1000
|
91 |
+
},
|
92 |
+
"train":{
|
93 |
+
"batch_size": 16,
|
94 |
+
"sort_sample": true,
|
95 |
+
"drop_last": true,
|
96 |
+
"group_size": 4,
|
97 |
+
"grad_clip_thresh": 1.0,
|
98 |
+
"dataloader": {
|
99 |
+
"num_worker": 8,
|
100 |
+
"pin_memory": true
|
101 |
+
},
|
102 |
+
"lr_scheduler":{
|
103 |
+
"num_warmup": 4000
|
104 |
+
},
|
105 |
+
// LR Scheduler
|
106 |
+
"scheduler": "NoamLR",
|
107 |
+
// Optimizer
|
108 |
+
"optimizer": "Adam",
|
109 |
+
"adam": {
|
110 |
+
"lr": 0.0625,
|
111 |
+
"betas": [0.9, 0.98],
|
112 |
+
"eps": 0.000000001,
|
113 |
+
"weight_decay": 0.0
|
114 |
+
},
|
115 |
+
}
|
116 |
+
|
117 |
+
}
|
config/transformer.json
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "config/base.json",
|
3 |
+
"model_type": "Transformer",
|
4 |
+
"task_type": "svc",
|
5 |
+
"use_custom_dataset": false,
|
6 |
+
"preprocess": {
|
7 |
+
// data augmentations
|
8 |
+
"use_pitch_shift": false,
|
9 |
+
"use_formant_shift": false,
|
10 |
+
"use_time_stretch": false,
|
11 |
+
"use_equalizer": false,
|
12 |
+
// acoustic features
|
13 |
+
"extract_mel": true,
|
14 |
+
"mel_min_max_norm": true,
|
15 |
+
"extract_pitch": true,
|
16 |
+
"pitch_extractor": "parselmouth",
|
17 |
+
"extract_uv": true,
|
18 |
+
"extract_energy": true,
|
19 |
+
// content features
|
20 |
+
"extract_whisper_feature": false,
|
21 |
+
"whisper_sample_rate": 16000,
|
22 |
+
"extract_contentvec_feature": false,
|
23 |
+
"contentvec_sample_rate": 16000,
|
24 |
+
"extract_wenet_feature": false,
|
25 |
+
"wenet_sample_rate": 16000,
|
26 |
+
"extract_mert_feature": false,
|
27 |
+
"mert_sample_rate": 16000,
|
28 |
+
// Default config for whisper
|
29 |
+
"whisper_frameshift": 0.01,
|
30 |
+
"whisper_downsample_rate": 2,
|
31 |
+
// Default config for content vector
|
32 |
+
"contentvec_frameshift": 0.02,
|
33 |
+
// Default config for mert
|
34 |
+
"mert_model": "m-a-p/MERT-v1-330M",
|
35 |
+
"mert_feature_layer": -1,
|
36 |
+
"mert_hop_size": 320,
|
37 |
+
// 24k
|
38 |
+
"mert_frameshit": 0.01333,
|
39 |
+
// 10ms
|
40 |
+
"wenet_frameshift": 0.01,
|
41 |
+
// wenetspeech is 4, gigaspeech is 6
|
42 |
+
"wenet_downsample_rate": 4,
|
43 |
+
// Default config
|
44 |
+
"n_mel": 100,
|
45 |
+
"win_size": 1024,
|
46 |
+
// todo
|
47 |
+
"hop_size": 256,
|
48 |
+
"sample_rate": 24000,
|
49 |
+
"n_fft": 1024,
|
50 |
+
// todo
|
51 |
+
"fmin": 0,
|
52 |
+
"fmax": 12000,
|
53 |
+
// todo
|
54 |
+
"f0_min": 50,
|
55 |
+
// ~C2
|
56 |
+
"f0_max": 1100,
|
57 |
+
//1100, // ~C6(1100), ~G5(800)
|
58 |
+
"pitch_bin": 256,
|
59 |
+
"pitch_max": 1100.0,
|
60 |
+
"pitch_min": 50.0,
|
61 |
+
"is_label": true,
|
62 |
+
"is_mu_law": true,
|
63 |
+
"bits": 8,
|
64 |
+
"mel_min_max_stats_dir": "mel_min_max_stats",
|
65 |
+
"whisper_dir": "whisper",
|
66 |
+
"contentvec_dir": "contentvec",
|
67 |
+
"wenet_dir": "wenet",
|
68 |
+
"mert_dir": "mert",
|
69 |
+
// Extract content features using dataloader
|
70 |
+
"pin_memory": true,
|
71 |
+
"num_workers": 8,
|
72 |
+
"content_feature_batch_size": 16,
|
73 |
+
// Features used for model training
|
74 |
+
"use_mel": true,
|
75 |
+
"use_min_max_norm_mel": true,
|
76 |
+
"use_frame_pitch": true,
|
77 |
+
"use_uv": true,
|
78 |
+
"use_frame_energy": true,
|
79 |
+
"use_log_scale_pitch": false,
|
80 |
+
"use_log_scale_energy": false,
|
81 |
+
"use_spkid": true,
|
82 |
+
// Meta file
|
83 |
+
"train_file": "train.json",
|
84 |
+
"valid_file": "test.json",
|
85 |
+
"spk2id": "singers.json",
|
86 |
+
"utt2spk": "utt2singer"
|
87 |
+
},
|
88 |
+
"model": {
|
89 |
+
"condition_encoder": {
|
90 |
+
"merge_mode": "add",
|
91 |
+
"input_melody_dim": 1,
|
92 |
+
"use_log_f0": true,
|
93 |
+
"n_bins_melody": 256,
|
94 |
+
//# Quantization (0 for not quantization)
|
95 |
+
"output_melody_dim": 384,
|
96 |
+
"input_loudness_dim": 1,
|
97 |
+
"use_log_loudness": true,
|
98 |
+
"n_bins_loudness": 256,
|
99 |
+
"output_loudness_dim": 384,
|
100 |
+
"use_whisper": false,
|
101 |
+
"use_contentvec": true,
|
102 |
+
"use_wenet": false,
|
103 |
+
"use_mert": false,
|
104 |
+
"whisper_dim": 1024,
|
105 |
+
"contentvec_dim": 256,
|
106 |
+
"mert_dim": 256,
|
107 |
+
"wenet_dim": 512,
|
108 |
+
"content_encoder_dim": 384,
|
109 |
+
"output_singer_dim": 384,
|
110 |
+
"singer_table_size": 512,
|
111 |
+
"output_content_dim": 384,
|
112 |
+
"use_spkid": true
|
113 |
+
},
|
114 |
+
"transformer": {
|
115 |
+
"type": "conformer",
|
116 |
+
// 'conformer' or 'transformer'
|
117 |
+
"input_dim": 384,
|
118 |
+
"output_dim": 100,
|
119 |
+
"n_heads": 2,
|
120 |
+
"n_layers": 6,
|
121 |
+
"filter_channels": 512,
|
122 |
+
"dropout": 0.1,
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"train": {
|
126 |
+
// Basic settings
|
127 |
+
"batch_size": 64,
|
128 |
+
"gradient_accumulation_step": 1,
|
129 |
+
"max_epoch": -1,
|
130 |
+
// -1 means no limit
|
131 |
+
"save_checkpoint_stride": [
|
132 |
+
10,
|
133 |
+
100
|
134 |
+
],
|
135 |
+
// unit is epoch
|
136 |
+
"keep_last": [
|
137 |
+
3,
|
138 |
+
-1
|
139 |
+
],
|
140 |
+
// -1 means infinite, if one number will broadcast
|
141 |
+
"run_eval": [
|
142 |
+
false,
|
143 |
+
true
|
144 |
+
],
|
145 |
+
// if one number will broadcast
|
146 |
+
// Fix the random seed
|
147 |
+
"random_seed": 10086,
|
148 |
+
// Batchsampler
|
149 |
+
"sampler": {
|
150 |
+
"holistic_shuffle": true,
|
151 |
+
"drop_last": true
|
152 |
+
},
|
153 |
+
// Dataloader
|
154 |
+
"dataloader": {
|
155 |
+
"num_worker": 32,
|
156 |
+
"pin_memory": true
|
157 |
+
},
|
158 |
+
// Trackers
|
159 |
+
"tracker": [
|
160 |
+
"tensorboard"
|
161 |
+
// "wandb",
|
162 |
+
// "cometml",
|
163 |
+
// "mlflow",
|
164 |
+
],
|
165 |
+
// Optimizer
|
166 |
+
"optimizer": "AdamW",
|
167 |
+
"adamw": {
|
168 |
+
"lr": 4.0e-4
|
169 |
+
// nn model lr
|
170 |
+
},
|
171 |
+
// LR Scheduler
|
172 |
+
"scheduler": "ReduceLROnPlateau",
|
173 |
+
"reducelronplateau": {
|
174 |
+
"factor": 0.8,
|
175 |
+
"patience": 10,
|
176 |
+
// unit is epoch
|
177 |
+
"min_lr": 1.0e-4
|
178 |
+
}
|
179 |
+
}
|
180 |
+
}
|
config/tts.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "config/base.json",
|
3 |
+
"supported_model_type": [
|
4 |
+
"Fastspeech2",
|
5 |
+
"VITS",
|
6 |
+
"VALLE",
|
7 |
+
],
|
8 |
+
"task_type": "tts",
|
9 |
+
"preprocess": {
|
10 |
+
"language": "en-us",
|
11 |
+
// linguistic features
|
12 |
+
"extract_phone": true,
|
13 |
+
"phone_extractor": "espeak", // "espeak, pypinyin, pypinyin_initials_finals, lexicon (only for language=en-us right now)"
|
14 |
+
"lexicon_path": "./text/lexicon/librispeech-lexicon.txt",
|
15 |
+
// Directory names of processed data or extracted features
|
16 |
+
"phone_dir": "phones",
|
17 |
+
"use_phone": true,
|
18 |
+
},
|
19 |
+
"model": {
|
20 |
+
"text_token_num": 512,
|
21 |
+
}
|
22 |
+
|
23 |
+
}
|
config/valle.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "config/tts.json",
|
3 |
+
"model_type": "VALLE",
|
4 |
+
"task_type": "tts",
|
5 |
+
"dataset": [
|
6 |
+
"libritts"
|
7 |
+
],
|
8 |
+
"preprocess": {
|
9 |
+
"extract_phone": true,
|
10 |
+
"phone_extractor": "espeak", // phoneme extractor: espeak, pypinyin, pypinyin_initials_finals or lexicon
|
11 |
+
"extract_acoustic_token": true,
|
12 |
+
"acoustic_token_extractor": "Encodec", // acoustic token extractor: encodec, dac(todo)
|
13 |
+
"acoustic_token_dir": "acoutic_tokens",
|
14 |
+
"use_text": false,
|
15 |
+
"use_phone": true,
|
16 |
+
"use_acoustic_token": true,
|
17 |
+
"symbols_dict": "symbols.dict",
|
18 |
+
"min_duration": 0.5, // the duration lowerbound to filter the audio with duration < min_duration
|
19 |
+
"max_duration": 14, // the duration uperbound to filter the audio with duration > max_duration.
|
20 |
+
"sampling_rate": 24000,
|
21 |
+
},
|
22 |
+
"model": {
|
23 |
+
"text_token_num": 512,
|
24 |
+
"audio_token_num": 1024,
|
25 |
+
"decoder_dim": 1024, // embedding dimension of the decoder model
|
26 |
+
"nhead": 16, // number of attention heads in the decoder layers
|
27 |
+
"num_decoder_layers": 12, // number of decoder layers
|
28 |
+
"norm_first": true, // pre or post Normalization.
|
29 |
+
"add_prenet": false, // whether add PreNet after Inputs
|
30 |
+
"prefix_mode": 0, // mode for how to prefix VALL-E NAR Decoder, 0: no prefix, 1: 0 to random, 2: random to random, 4: chunk of pre or post utterance
|
31 |
+
"share_embedding": true, // share the parameters of the output projection layer with the parameters of the acoustic embedding
|
32 |
+
"nar_scale_factor": 1, // model scale factor which will be assigned different meanings in different models
|
33 |
+
"prepend_bos": false, // whether prepend <BOS> to the acoustic tokens -> AR Decoder inputs
|
34 |
+
"num_quantizers": 8, // numbert of the audio quantization layers
|
35 |
+
// "scaling_xformers": false, // Apply Reworked Conformer scaling on Transformers
|
36 |
+
},
|
37 |
+
"train": {
|
38 |
+
"ddp": false,
|
39 |
+
"train_stage": 1, // 0: train all modules, For VALL_E, support 1: AR Decoder 2: NAR Decoder(s)
|
40 |
+
"max_epoch": 20,
|
41 |
+
"optimizer": "ScaledAdam",
|
42 |
+
"scheduler": "Eden",
|
43 |
+
"warmup_steps": 200, // number of steps that affects how rapidly the learning rate decreases
|
44 |
+
"base_lr": 0.05, // base learning rate."
|
45 |
+
"valid_interval": 1000,
|
46 |
+
"log_epoch_step": 1000,
|
47 |
+
"save_checkpoint_stride": [
|
48 |
+
1,
|
49 |
+
1
|
50 |
+
]
|
51 |
+
}
|
52 |
+
}
|
config/vits.json
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "config/tts.json",
|
3 |
+
"model_type": "VITS",
|
4 |
+
"task_type": "tts",
|
5 |
+
"preprocess": {
|
6 |
+
"extract_phone": true,
|
7 |
+
"extract_mel": true,
|
8 |
+
"n_mel": 80,
|
9 |
+
"fmin": 0,
|
10 |
+
"fmax": null,
|
11 |
+
"extract_linear_spec": true,
|
12 |
+
"extract_audio": true,
|
13 |
+
"use_linear": true,
|
14 |
+
"use_mel": true,
|
15 |
+
"use_audio": true,
|
16 |
+
"use_text": false,
|
17 |
+
"use_phone": true,
|
18 |
+
"lexicon_path": "./text/lexicon/librispeech-lexicon.txt",
|
19 |
+
"n_fft": 1024,
|
20 |
+
"win_size": 1024,
|
21 |
+
"hop_size": 256,
|
22 |
+
"segment_size": 8192,
|
23 |
+
"text_cleaners": [
|
24 |
+
"english_cleaners"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
"model": {
|
28 |
+
"text_token_num": 512,
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0.1,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [
|
38 |
+
3,
|
39 |
+
7,
|
40 |
+
11
|
41 |
+
],
|
42 |
+
"resblock_dilation_sizes": [
|
43 |
+
[
|
44 |
+
1,
|
45 |
+
3,
|
46 |
+
5
|
47 |
+
],
|
48 |
+
[
|
49 |
+
1,
|
50 |
+
3,
|
51 |
+
5
|
52 |
+
],
|
53 |
+
[
|
54 |
+
1,
|
55 |
+
3,
|
56 |
+
5
|
57 |
+
]
|
58 |
+
],
|
59 |
+
"upsample_rates": [
|
60 |
+
8,
|
61 |
+
8,
|
62 |
+
2,
|
63 |
+
2
|
64 |
+
],
|
65 |
+
"upsample_initial_channel": 512,
|
66 |
+
"upsample_kernel_sizes": [
|
67 |
+
16,
|
68 |
+
16,
|
69 |
+
4,
|
70 |
+
4
|
71 |
+
],
|
72 |
+
"n_layers_q": 3,
|
73 |
+
"use_spectral_norm": false,
|
74 |
+
"n_speakers": 0, // number of speakers, while be automatically set if n_speakers is 0 and multi_speaker_training is true
|
75 |
+
"gin_channels": 256,
|
76 |
+
"use_sdp": true
|
77 |
+
},
|
78 |
+
"train": {
|
79 |
+
"fp16_run": true,
|
80 |
+
"learning_rate": 2e-4,
|
81 |
+
"betas": [
|
82 |
+
0.8,
|
83 |
+
0.99
|
84 |
+
],
|
85 |
+
"eps": 1e-9,
|
86 |
+
"batch_size": 16,
|
87 |
+
"lr_decay": 0.999875,
|
88 |
+
// "segment_size": 8192,
|
89 |
+
"init_lr_ratio": 1,
|
90 |
+
"warmup_epochs": 0,
|
91 |
+
"c_mel": 45,
|
92 |
+
"c_kl": 1.0,
|
93 |
+
"AdamW": {
|
94 |
+
"betas": [
|
95 |
+
0.8,
|
96 |
+
0.99
|
97 |
+
],
|
98 |
+
"eps": 1e-9,
|
99 |
+
}
|
100 |
+
}
|
101 |
+
}
|
config/vocoder.json
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "config/base.json",
|
3 |
+
"dataset": [
|
4 |
+
"LJSpeech",
|
5 |
+
"LibriTTS",
|
6 |
+
"opencpop",
|
7 |
+
"m4singer",
|
8 |
+
"svcc",
|
9 |
+
"svcceval",
|
10 |
+
"pjs",
|
11 |
+
"opensinger",
|
12 |
+
"popbutfy",
|
13 |
+
"nus48e",
|
14 |
+
"popcs",
|
15 |
+
"kising",
|
16 |
+
"csd",
|
17 |
+
"opera",
|
18 |
+
"vctk",
|
19 |
+
"lijian",
|
20 |
+
"cdmusiceval"
|
21 |
+
],
|
22 |
+
"task_type": "vocoder",
|
23 |
+
"preprocess": {
|
24 |
+
// acoustic features
|
25 |
+
"extract_mel": true,
|
26 |
+
"extract_pitch": false,
|
27 |
+
"extract_uv": false,
|
28 |
+
"extract_audio": true,
|
29 |
+
"extract_label": false,
|
30 |
+
"extract_one_hot": false,
|
31 |
+
"extract_amplitude_phase": false,
|
32 |
+
"pitch_extractor": "parselmouth",
|
33 |
+
// Settings for data preprocessing
|
34 |
+
"n_mel": 100,
|
35 |
+
"win_size": 1024,
|
36 |
+
"hop_size": 256,
|
37 |
+
"sample_rate": 24000,
|
38 |
+
"n_fft": 1024,
|
39 |
+
"fmin": 0,
|
40 |
+
"fmax": 12000,
|
41 |
+
"f0_min": 50,
|
42 |
+
"f0_max": 1100,
|
43 |
+
"pitch_bin": 256,
|
44 |
+
"pitch_max": 1100.0,
|
45 |
+
"pitch_min": 50.0,
|
46 |
+
"is_mu_law": false,
|
47 |
+
"bits": 8,
|
48 |
+
"cut_mel_frame": 32,
|
49 |
+
// Directory names of processed data or extracted features
|
50 |
+
"spk2id": "singers.json",
|
51 |
+
// Features used for model training
|
52 |
+
"use_mel": true,
|
53 |
+
"use_frame_pitch": false,
|
54 |
+
"use_uv": false,
|
55 |
+
"use_audio": true,
|
56 |
+
"use_label": false,
|
57 |
+
"use_one_hot": false,
|
58 |
+
"train_file": "train.json",
|
59 |
+
"valid_file": "test.json"
|
60 |
+
},
|
61 |
+
"train": {
|
62 |
+
"random_seed": 114514,
|
63 |
+
"batch_size": 64,
|
64 |
+
"gradient_accumulation_step": 1,
|
65 |
+
"max_epoch": 1000000,
|
66 |
+
"save_checkpoint_stride": [
|
67 |
+
20
|
68 |
+
],
|
69 |
+
"run_eval": [
|
70 |
+
true
|
71 |
+
],
|
72 |
+
"sampler": {
|
73 |
+
"holistic_shuffle": true,
|
74 |
+
"drop_last": true
|
75 |
+
},
|
76 |
+
"dataloader": {
|
77 |
+
"num_worker": 4,
|
78 |
+
"pin_memory": true
|
79 |
+
},
|
80 |
+
"tracker": [
|
81 |
+
"tensorboard"
|
82 |
+
],
|
83 |
+
}
|
84 |
+
}
|
egs/vocoder/README.md
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Amphion Vocoder Recipe
|
2 |
+
|
3 |
+
## Quick Start
|
4 |
+
|
5 |
+
We provide a [**beginner recipe**](gan/tfr_enhanced_hifigan/README.md) to demonstrate how to train a high quality HiFi-GAN speech vocoder. Specially, it is also an official implementation of our paper "[Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder](https://arxiv.org/abs/2311.14957)". Some demos can be seen [here](https://vocodexelysium.github.io/MS-SB-CQTD/).
|
6 |
+
|
7 |
+
## Supported Models
|
8 |
+
|
9 |
+
Neural vocoder generates audible waveforms from acoustic representations, which is one of the key parts for current audio generation systems. Until now, Amphion has supported various widely-used vocoders according to different vocoder types, including:
|
10 |
+
|
11 |
+
- **GAN-based vocoders**, which we have provided [**a unified recipe**](gan/README.md) :
|
12 |
+
- [MelGAN](https://arxiv.org/abs/1910.06711)
|
13 |
+
- [HiFi-GAN](https://arxiv.org/abs/2010.05646)
|
14 |
+
- [NSF-HiFiGAN](https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts)
|
15 |
+
- [BigVGAN](https://arxiv.org/abs/2206.04658)
|
16 |
+
- [APNet](https://arxiv.org/abs/2305.07952)
|
17 |
+
- **Flow-based vocoders** (👨💻 developing):
|
18 |
+
- [WaveGlow](https://arxiv.org/abs/1811.00002)
|
19 |
+
- **Diffusion-based vocoders** (👨💻 developing):
|
20 |
+
- [Diffwave](https://arxiv.org/abs/2009.09761)
|
21 |
+
- **Auto-regressive based vocoders** (👨💻 developing):
|
22 |
+
- [WaveNet](https://arxiv.org/abs/1609.03499)
|
23 |
+
- [WaveRNN](https://arxiv.org/abs/1802.08435v1)
|
egs/vocoder/diffusion/README.md
ADDED
File without changes
|
egs/vocoder/diffusion/exp_config_base.json
ADDED
File without changes
|
egs/vocoder/gan/README.md
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Amphion GAN-based Vocoder Recipe
|
2 |
+
|
3 |
+
## Supported Model Architectures
|
4 |
+
|
5 |
+
GAN-based Vocoder consists of a generator and multiple discriminators, as illustrated below:
|
6 |
+
|
7 |
+
<br>
|
8 |
+
<div align="center">
|
9 |
+
<img src="../../../imgs/vocoder/gan/pipeline.png" width="40%">
|
10 |
+
</div>
|
11 |
+
<br>
|
12 |
+
|
13 |
+
Until now, Amphion GAN-based Vocoder has supported the following generators and discriminators.
|
14 |
+
|
15 |
+
- **Generators**
|
16 |
+
- [MelGAN](https://arxiv.org/abs/1910.06711)
|
17 |
+
- [HiFi-GAN](https://arxiv.org/abs/2010.05646)
|
18 |
+
- [NSF-HiFiGAN](https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts)
|
19 |
+
- [BigVGAN](https://arxiv.org/abs/2206.04658)
|
20 |
+
- [APNet](https://arxiv.org/abs/2305.07952)
|
21 |
+
- **Discriminators**
|
22 |
+
- [Multi-Scale Discriminator](https://arxiv.org/abs/2010.05646)
|
23 |
+
- [Multi-Period Discriminator](https://arxiv.org/abs/2010.05646)
|
24 |
+
- [Multi-Resolution Discriminator](https://arxiv.org/abs/2011.09631)
|
25 |
+
- [Multi-Scale Short-Time Fourier Transform Discriminator](https://arxiv.org/abs/2210.13438)
|
26 |
+
- [**Multi-Scale Constant-Q Transfrom Discriminator (ours)**](https://arxiv.org/abs/2311.14957)
|
27 |
+
|
28 |
+
You can use any vocoder architecture with any dataset you want. There are four steps in total:
|
29 |
+
|
30 |
+
1. Data preparation
|
31 |
+
2. Feature extraction
|
32 |
+
3. Training
|
33 |
+
4. Inference
|
34 |
+
|
35 |
+
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path:
|
36 |
+
> ```bash
|
37 |
+
> cd Amphion
|
38 |
+
> ```
|
39 |
+
|
40 |
+
## 1. Data Preparation
|
41 |
+
|
42 |
+
You can train the vocoder with any datasets. Amphion's supported open-source datasets are detailed [here](../../../datasets/README.md).
|
43 |
+
|
44 |
+
### Configuration
|
45 |
+
|
46 |
+
Specify the dataset path in `exp_config_base.json`. Note that you can change the `dataset` list to use your preferred datasets.
|
47 |
+
|
48 |
+
```json
|
49 |
+
"dataset": [
|
50 |
+
"csd",
|
51 |
+
"kising",
|
52 |
+
"m4singer",
|
53 |
+
"nus48e",
|
54 |
+
"opencpop",
|
55 |
+
"opensinger",
|
56 |
+
"opera",
|
57 |
+
"pjs",
|
58 |
+
"popbutfy",
|
59 |
+
"popcs",
|
60 |
+
"ljspeech",
|
61 |
+
"vctk",
|
62 |
+
"libritts",
|
63 |
+
],
|
64 |
+
"dataset_path": {
|
65 |
+
// TODO: Fill in your dataset path
|
66 |
+
"csd": "[dataset path]",
|
67 |
+
"kising": "[dataset path]",
|
68 |
+
"m4singer": "[dataset path]",
|
69 |
+
"nus48e": "[dataset path]",
|
70 |
+
"opencpop": "[dataset path]",
|
71 |
+
"opensinger": "[dataset path]",
|
72 |
+
"opera": "[dataset path]",
|
73 |
+
"pjs": "[dataset path]",
|
74 |
+
"popbutfy": "[dataset path]",
|
75 |
+
"popcs": "[dataset path]",
|
76 |
+
"ljspeech": "[dataset path]",
|
77 |
+
"vctk": "[dataset path]",
|
78 |
+
"libritts": "[dataset path]",
|
79 |
+
},
|
80 |
+
```
|
81 |
+
|
82 |
+
### 2. Feature Extraction
|
83 |
+
|
84 |
+
The needed features are speficied in the individual vocoder direction so it doesn't require any modification.
|
85 |
+
|
86 |
+
### Configuration
|
87 |
+
|
88 |
+
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config_base.json`:
|
89 |
+
|
90 |
+
```json
|
91 |
+
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder"
|
92 |
+
"log_dir": "ckpts/vocoder",
|
93 |
+
"preprocess": {
|
94 |
+
// TODO: Fill in the output data path. The default value is "Amphion/data"
|
95 |
+
"processed_dir": "data",
|
96 |
+
...
|
97 |
+
},
|
98 |
+
```
|
99 |
+
|
100 |
+
### Run
|
101 |
+
|
102 |
+
Run the `run.sh` as the preproces stage (set `--stage 1`).
|
103 |
+
|
104 |
+
```bash
|
105 |
+
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 1
|
106 |
+
```
|
107 |
+
|
108 |
+
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`.
|
109 |
+
|
110 |
+
## 3. Training
|
111 |
+
|
112 |
+
### Configuration
|
113 |
+
|
114 |
+
We provide the default hyparameters in the `exp_config_base.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.
|
115 |
+
|
116 |
+
```json
|
117 |
+
"train": {
|
118 |
+
"batch_size": 16,
|
119 |
+
"max_epoch": 1000000,
|
120 |
+
"save_checkpoint_stride": [20],
|
121 |
+
"adamw": {
|
122 |
+
"lr": 2.0e-4,
|
123 |
+
"adam_b1": 0.8,
|
124 |
+
"adam_b2": 0.99
|
125 |
+
},
|
126 |
+
"exponential_lr": {
|
127 |
+
"lr_decay": 0.999
|
128 |
+
},
|
129 |
+
}
|
130 |
+
```
|
131 |
+
|
132 |
+
You can also choose any amount of prefered discriminators for training in the `exp_config_base.json`.
|
133 |
+
|
134 |
+
```json
|
135 |
+
"discriminators": [
|
136 |
+
"msd",
|
137 |
+
"mpd",
|
138 |
+
"msstftd",
|
139 |
+
"mssbcqtd",
|
140 |
+
],
|
141 |
+
```
|
142 |
+
|
143 |
+
### Run
|
144 |
+
|
145 |
+
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/vocoder/[YourExptName]`.
|
146 |
+
|
147 |
+
```bash
|
148 |
+
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 2 --name [YourExptName]
|
149 |
+
```
|
150 |
+
|
151 |
+
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`.
|
152 |
+
|
153 |
+
|
154 |
+
## 4. Inference
|
155 |
+
|
156 |
+
### Run
|
157 |
+
|
158 |
+
Run the `run.sh` as the training stage (set `--stage 3`), we provide three different inference modes, including `infer_from_dataset`, `infer_from_feature`, `and infer_from_audio`.
|
159 |
+
|
160 |
+
```bash
|
161 |
+
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
|
162 |
+
--infer_mode [Your chosen inference mode] \
|
163 |
+
--infer_datasets [Datasets you want to inference, needed when infer_from_dataset] \
|
164 |
+
--infer_feature_dir [Your path to your predicted acoustic features, needed when infer_from_feature] \
|
165 |
+
--infer_audio_dir [Your path to your audio files, needed when infer_form_audio] \
|
166 |
+
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
|
167 |
+
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
|
168 |
+
```
|
169 |
+
|
170 |
+
#### a. Inference from Dataset
|
171 |
+
|
172 |
+
Run the `run.sh` with specified datasets, here is an example.
|
173 |
+
|
174 |
+
```bash
|
175 |
+
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
|
176 |
+
--infer_mode infer_from_dataset \
|
177 |
+
--infer_datasets "libritts vctk ljspeech" \
|
178 |
+
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
|
179 |
+
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
|
180 |
+
```
|
181 |
+
|
182 |
+
#### b. Inference from Features
|
183 |
+
|
184 |
+
If you want to inference from your generated acoustic features, you should first prepare your acoustic features into the following structure:
|
185 |
+
|
186 |
+
```plaintext
|
187 |
+
┣ {infer_feature_dir}
|
188 |
+
┃ ┣ mels
|
189 |
+
┃ ┃ ┣ sample1.npy
|
190 |
+
┃ ┃ ┣ sample2.npy
|
191 |
+
┃ ┣ f0s (required if you use NSF-HiFiGAN)
|
192 |
+
┃ ┃ ┣ sample1.npy
|
193 |
+
┃ ┃ ┣ sample2.npy
|
194 |
+
```
|
195 |
+
|
196 |
+
Then run the `run.sh` with specificed folder direction, here is an example.
|
197 |
+
|
198 |
+
```bash
|
199 |
+
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
|
200 |
+
--infer_mode infer_from_feature \
|
201 |
+
--infer_feature_dir [Your path to your predicted acoustic features] \
|
202 |
+
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
|
203 |
+
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
|
204 |
+
```
|
205 |
+
|
206 |
+
#### c. Inference from Audios
|
207 |
+
|
208 |
+
If you want to inference from audios for quick analysis synthesis, you should first prepare your audios into the following structure:
|
209 |
+
|
210 |
+
```plaintext
|
211 |
+
┣ audios
|
212 |
+
┃ ┣ sample1.wav
|
213 |
+
┃ ┣ sample2.wav
|
214 |
+
```
|
215 |
+
|
216 |
+
Then run the `run.sh` with specificed folder direction, here is an example.
|
217 |
+
|
218 |
+
```bash
|
219 |
+
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
|
220 |
+
--infer_mode infer_from_audio \
|
221 |
+
--infer_audio_dir [Your path to your audio files] \
|
222 |
+
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
|
223 |
+
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
|
224 |
+
```
|
egs/vocoder/gan/_template/run.sh
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
######## Build Experiment Environment ###########
|
7 |
+
exp_dir=$(cd `dirname $0`; pwd)
|
8 |
+
work_dir=$(dirname $(dirname $(dirname $(dirname $exp_dir))))
|
9 |
+
|
10 |
+
export WORK_DIR=$work_dir
|
11 |
+
export PYTHONPATH=$work_dir
|
12 |
+
export PYTHONIOENCODING=UTF-8
|
13 |
+
|
14 |
+
######## Parse the Given Parameters from the Commond ###########
|
15 |
+
options=$(getopt -o c:n:s --long gpu:,config:,name:,stage:,resume:,checkpoint:,resume_type:,infer_mode:,infer_datasets:,infer_feature_dir:,infer_audio_dir:,infer_expt_dir:,infer_output_dir: -- "$@")
|
16 |
+
eval set -- "$options"
|
17 |
+
|
18 |
+
while true; do
|
19 |
+
case $1 in
|
20 |
+
# Experimental Configuration File
|
21 |
+
-c | --config) shift; exp_config=$1 ; shift ;;
|
22 |
+
# Experimental Name
|
23 |
+
-n | --name) shift; exp_name=$1 ; shift ;;
|
24 |
+
# Running Stage
|
25 |
+
-s | --stage) shift; running_stage=$1 ; shift ;;
|
26 |
+
# Visible GPU machines. The default value is "0".
|
27 |
+
--gpu) shift; gpu=$1 ; shift ;;
|
28 |
+
|
29 |
+
# [Only for Training] Resume configuration
|
30 |
+
--resume) shift; resume=$1 ; shift ;;
|
31 |
+
# [Only for Training] The specific checkpoint path that you want to resume from.
|
32 |
+
--checkpoint) shift; cehckpoint=$1 ; shift ;;
|
33 |
+
# [Only for Training] `resume` for loading all the things (including model weights, optimizer, scheduler, and random states). `finetune` for loading only the model weights.
|
34 |
+
--resume_type) shift; resume_type=$1 ; shift ;;
|
35 |
+
|
36 |
+
# [Only for Inference] The inference mode
|
37 |
+
--infer_mode) shift; infer_mode=$1 ; shift ;;
|
38 |
+
# [Only for Inference] The inferenced datasets
|
39 |
+
--infer_datasets) shift; infer_datasets=$1 ; shift ;;
|
40 |
+
# [Only for Inference] The feature dir for inference
|
41 |
+
--infer_feature_dir) shift; infer_feature_dir=$1 ; shift ;;
|
42 |
+
# [Only for Inference] The audio dir for inference
|
43 |
+
--infer_audio_dir) shift; infer_audio_dir=$1 ; shift ;;
|
44 |
+
# [Only for Inference] The experiment dir. The value is like "[Your path to save logs and checkpoints]/[YourExptName]"
|
45 |
+
--infer_expt_dir) shift; infer_expt_dir=$1 ; shift ;;
|
46 |
+
# [Only for Inference] The output dir to save inferred audios. Its default value is "$expt_dir/result"
|
47 |
+
--infer_output_dir) shift; infer_output_dir=$1 ; shift ;;
|
48 |
+
|
49 |
+
--) shift ; break ;;
|
50 |
+
*) echo "Invalid option: $1" exit 1 ;;
|
51 |
+
esac
|
52 |
+
done
|
53 |
+
|
54 |
+
|
55 |
+
### Value check ###
|
56 |
+
if [ -z "$running_stage" ]; then
|
57 |
+
echo "[Error] Please specify the running stage"
|
58 |
+
exit 1
|
59 |
+
fi
|
60 |
+
|
61 |
+
if [ -z "$exp_config" ]; then
|
62 |
+
exp_config="${exp_dir}"/exp_config.json
|
63 |
+
fi
|
64 |
+
echo "Exprimental Configuration File: $exp_config"
|
65 |
+
|
66 |
+
if [ -z "$gpu" ]; then
|
67 |
+
gpu="0"
|
68 |
+
fi
|
69 |
+
|
70 |
+
######## Features Extraction ###########
|
71 |
+
if [ $running_stage -eq 1 ]; then
|
72 |
+
CUDA_VISIBLE_DEVICES=$gpu python "${work_dir}"/bins/vocoder/preprocess.py \
|
73 |
+
--config $exp_config \
|
74 |
+
--num_workers 8
|
75 |
+
fi
|
76 |
+
|
77 |
+
######## Training ###########
|
78 |
+
if [ $running_stage -eq 2 ]; then
|
79 |
+
if [ -z "$exp_name" ]; then
|
80 |
+
echo "[Error] Please specify the experiments name"
|
81 |
+
exit 1
|
82 |
+
fi
|
83 |
+
echo "Exprimental Name: $exp_name"
|
84 |
+
|
85 |
+
if [ "$resume" = true ]; then
|
86 |
+
echo "Automatically resume from the experimental dir..."
|
87 |
+
CUDA_VISIBLE_DEVICES="$gpu" accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
88 |
+
--config "$exp_config" \
|
89 |
+
--exp_name "$exp_name" \
|
90 |
+
--log_level info \
|
91 |
+
--resume
|
92 |
+
else
|
93 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
94 |
+
--config "$exp_config" \
|
95 |
+
--exp_name "$exp_name" \
|
96 |
+
--log_level info \
|
97 |
+
--checkpoint "$checkpoint" \
|
98 |
+
--resume_type "$resume_type"
|
99 |
+
fi
|
100 |
+
fi
|
101 |
+
|
102 |
+
######## Inference/Conversion ###########
|
103 |
+
if [ $running_stage -eq 3 ]; then
|
104 |
+
if [ -z "$infer_expt_dir" ]; then
|
105 |
+
echo "[Error] Please specify the experimental directionary. The value is like [Your path to save logs and checkpoints]/[YourExptName]"
|
106 |
+
exit 1
|
107 |
+
fi
|
108 |
+
|
109 |
+
if [ -z "$infer_output_dir" ]; then
|
110 |
+
infer_output_dir="$infer_expt_dir/result"
|
111 |
+
fi
|
112 |
+
|
113 |
+
if [ $infer_mode = "infer_from_dataset" ]; then
|
114 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
115 |
+
--config $exp_config \
|
116 |
+
--infer_mode $infer_mode \
|
117 |
+
--infer_datasets $infer_datasets \
|
118 |
+
--vocoder_dir $infer_expt_dir \
|
119 |
+
--output_dir $infer_output_dir \
|
120 |
+
--log_level debug
|
121 |
+
fi
|
122 |
+
|
123 |
+
if [ $infer_mode = "infer_from_feature" ]; then
|
124 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
125 |
+
--config $exp_config \
|
126 |
+
--infer_mode $infer_mode \
|
127 |
+
--feature_folder $infer_feature_dir \
|
128 |
+
--vocoder_dir $infer_expt_dir \
|
129 |
+
--output_dir $infer_output_dir \
|
130 |
+
--log_level debug
|
131 |
+
fi
|
132 |
+
|
133 |
+
if [ $infer_mode = "infer_from_audio" ]; then
|
134 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
135 |
+
--config $exp_config \
|
136 |
+
--infer_mode $infer_mode \
|
137 |
+
--audio_folder $infer_audio_dir \
|
138 |
+
--vocoder_dir $infer_expt_dir \
|
139 |
+
--output_dir $infer_output_dir \
|
140 |
+
--log_level debug
|
141 |
+
fi
|
142 |
+
|
143 |
+
fi
|
egs/vocoder/gan/apnet/exp_config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "egs/vocoder/gan/exp_config_base.json",
|
3 |
+
"preprocess": {
|
4 |
+
// acoustic features
|
5 |
+
"extract_mel": true,
|
6 |
+
"extract_audio": true,
|
7 |
+
"extract_amplitude_phase": true,
|
8 |
+
|
9 |
+
// Features used for model training
|
10 |
+
"use_mel": true,
|
11 |
+
"use_audio": true,
|
12 |
+
"use_amplitude_phase": true
|
13 |
+
},
|
14 |
+
"model": {
|
15 |
+
"generator": "apnet",
|
16 |
+
"apnet": {
|
17 |
+
"ASP_channel": 512,
|
18 |
+
"ASP_resblock_kernel_sizes": [3,7,11],
|
19 |
+
"ASP_resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
20 |
+
"ASP_input_conv_kernel_size": 7,
|
21 |
+
"ASP_output_conv_kernel_size": 7,
|
22 |
+
|
23 |
+
"PSP_channel": 512,
|
24 |
+
"PSP_resblock_kernel_sizes": [3,7,11],
|
25 |
+
"PSP_resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
26 |
+
"PSP_input_conv_kernel_size": 7,
|
27 |
+
"PSP_output_R_conv_kernel_size": 7,
|
28 |
+
"PSP_output_I_conv_kernel_size": 7,
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"train": {
|
32 |
+
"criterions": [
|
33 |
+
"feature",
|
34 |
+
"discriminator",
|
35 |
+
"generator",
|
36 |
+
"mel",
|
37 |
+
"phase",
|
38 |
+
"amplitude",
|
39 |
+
"consistency"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
"inference": {
|
43 |
+
"batch_size": 1,
|
44 |
+
}
|
45 |
+
}
|
egs/vocoder/gan/apnet/run.sh
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
######## Build Experiment Environment ###########
|
7 |
+
exp_dir=$(cd `dirname $0`; pwd)
|
8 |
+
work_dir=$(dirname $(dirname $(dirname $(dirname $exp_dir))))
|
9 |
+
|
10 |
+
export WORK_DIR=$work_dir
|
11 |
+
export PYTHONPATH=$work_dir
|
12 |
+
export PYTHONIOENCODING=UTF-8
|
13 |
+
|
14 |
+
######## Parse the Given Parameters from the Commond ###########
|
15 |
+
options=$(getopt -o c:n:s --long gpu:,config:,name:,stage:,resume:,checkpoint:,resume_type:,infer_mode:,infer_datasets:,infer_feature_dir:,infer_audio_dir:,infer_expt_dir:,infer_output_dir: -- "$@")
|
16 |
+
eval set -- "$options"
|
17 |
+
|
18 |
+
while true; do
|
19 |
+
case $1 in
|
20 |
+
# Experimental Configuration File
|
21 |
+
-c | --config) shift; exp_config=$1 ; shift ;;
|
22 |
+
# Experimental Name
|
23 |
+
-n | --name) shift; exp_name=$1 ; shift ;;
|
24 |
+
# Running Stage
|
25 |
+
-s | --stage) shift; running_stage=$1 ; shift ;;
|
26 |
+
# Visible GPU machines. The default value is "0".
|
27 |
+
--gpu) shift; gpu=$1 ; shift ;;
|
28 |
+
|
29 |
+
# [Only for Training] Resume configuration
|
30 |
+
--resume) shift; resume=$1 ; shift ;;
|
31 |
+
# [Only for Training] The specific checkpoint path that you want to resume from.
|
32 |
+
--checkpoint) shift; cehckpoint=$1 ; shift ;;
|
33 |
+
# [Only for Training] `resume` for loading all the things (including model weights, optimizer, scheduler, and random states). `finetune` for loading only the model weights.
|
34 |
+
--resume_type) shift; resume_type=$1 ; shift ;;
|
35 |
+
|
36 |
+
# [Only for Inference] The inference mode
|
37 |
+
--infer_mode) shift; infer_mode=$1 ; shift ;;
|
38 |
+
# [Only for Inference] The inferenced datasets
|
39 |
+
--infer_datasets) shift; infer_datasets=$1 ; shift ;;
|
40 |
+
# [Only for Inference] The feature dir for inference
|
41 |
+
--infer_feature_dir) shift; infer_feature_dir=$1 ; shift ;;
|
42 |
+
# [Only for Inference] The audio dir for inference
|
43 |
+
--infer_audio_dir) shift; infer_audio_dir=$1 ; shift ;;
|
44 |
+
# [Only for Inference] The experiment dir. The value is like "[Your path to save logs and checkpoints]/[YourExptName]"
|
45 |
+
--infer_expt_dir) shift; infer_expt_dir=$1 ; shift ;;
|
46 |
+
# [Only for Inference] The output dir to save inferred audios. Its default value is "$expt_dir/result"
|
47 |
+
--infer_output_dir) shift; infer_output_dir=$1 ; shift ;;
|
48 |
+
|
49 |
+
--) shift ; break ;;
|
50 |
+
*) echo "Invalid option: $1" exit 1 ;;
|
51 |
+
esac
|
52 |
+
done
|
53 |
+
|
54 |
+
|
55 |
+
### Value check ###
|
56 |
+
if [ -z "$running_stage" ]; then
|
57 |
+
echo "[Error] Please specify the running stage"
|
58 |
+
exit 1
|
59 |
+
fi
|
60 |
+
|
61 |
+
if [ -z "$exp_config" ]; then
|
62 |
+
exp_config="${exp_dir}"/exp_config.json
|
63 |
+
fi
|
64 |
+
echo "Exprimental Configuration File: $exp_config"
|
65 |
+
|
66 |
+
if [ -z "$gpu" ]; then
|
67 |
+
gpu="0"
|
68 |
+
fi
|
69 |
+
|
70 |
+
######## Features Extraction ###########
|
71 |
+
if [ $running_stage -eq 1 ]; then
|
72 |
+
CUDA_VISIBLE_DEVICES=$gpu python "${work_dir}"/bins/vocoder/preprocess.py \
|
73 |
+
--config $exp_config \
|
74 |
+
--num_workers 8
|
75 |
+
fi
|
76 |
+
|
77 |
+
######## Training ###########
|
78 |
+
if [ $running_stage -eq 2 ]; then
|
79 |
+
if [ -z "$exp_name" ]; then
|
80 |
+
echo "[Error] Please specify the experiments name"
|
81 |
+
exit 1
|
82 |
+
fi
|
83 |
+
echo "Exprimental Name: $exp_name"
|
84 |
+
|
85 |
+
if [ "$resume" = true ]; then
|
86 |
+
echo "Automatically resume from the experimental dir..."
|
87 |
+
CUDA_VISIBLE_DEVICES="$gpu" accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
88 |
+
--config "$exp_config" \
|
89 |
+
--exp_name "$exp_name" \
|
90 |
+
--log_level info \
|
91 |
+
--resume
|
92 |
+
else
|
93 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
94 |
+
--config "$exp_config" \
|
95 |
+
--exp_name "$exp_name" \
|
96 |
+
--log_level info \
|
97 |
+
--checkpoint "$checkpoint" \
|
98 |
+
--resume_type "$resume_type"
|
99 |
+
fi
|
100 |
+
fi
|
101 |
+
|
102 |
+
######## Inference/Conversion ###########
|
103 |
+
if [ $running_stage -eq 3 ]; then
|
104 |
+
if [ -z "$infer_expt_dir" ]; then
|
105 |
+
echo "[Error] Please specify the experimental directionary. The value is like [Your path to save logs and checkpoints]/[YourExptName]"
|
106 |
+
exit 1
|
107 |
+
fi
|
108 |
+
|
109 |
+
if [ -z "$infer_output_dir" ]; then
|
110 |
+
infer_output_dir="$infer_expt_dir/result"
|
111 |
+
fi
|
112 |
+
|
113 |
+
if [ $infer_mode = "infer_from_dataset" ]; then
|
114 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
115 |
+
--config $exp_config \
|
116 |
+
--infer_mode $infer_mode \
|
117 |
+
--infer_datasets $infer_datasets \
|
118 |
+
--vocoder_dir $infer_expt_dir \
|
119 |
+
--output_dir $infer_output_dir \
|
120 |
+
--log_level debug
|
121 |
+
fi
|
122 |
+
|
123 |
+
if [ $infer_mode = "infer_from_feature" ]; then
|
124 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
125 |
+
--config $exp_config \
|
126 |
+
--infer_mode $infer_mode \
|
127 |
+
--feature_folder $infer_feature_dir \
|
128 |
+
--vocoder_dir $infer_expt_dir \
|
129 |
+
--output_dir $infer_output_dir \
|
130 |
+
--log_level debug
|
131 |
+
fi
|
132 |
+
|
133 |
+
if [ $infer_mode = "infer_from_audio" ]; then
|
134 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
135 |
+
--config $exp_config \
|
136 |
+
--infer_mode $infer_mode \
|
137 |
+
--audio_folder $infer_audio_dir \
|
138 |
+
--vocoder_dir $infer_expt_dir \
|
139 |
+
--output_dir $infer_output_dir \
|
140 |
+
--log_level debug
|
141 |
+
fi
|
142 |
+
|
143 |
+
fi
|
egs/vocoder/gan/bigvgan/exp_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "egs/vocoder/gan/exp_config_base.json",
|
3 |
+
"preprocess": {
|
4 |
+
// acoustic features
|
5 |
+
"extract_mel": true,
|
6 |
+
"extract_audio": true,
|
7 |
+
|
8 |
+
// Features used for model training
|
9 |
+
"use_mel": true,
|
10 |
+
"use_audio": true
|
11 |
+
},
|
12 |
+
"model": {
|
13 |
+
"generator": "bigvgan",
|
14 |
+
"bigvgan": {
|
15 |
+
"resblock": "1",
|
16 |
+
"activation": "snakebeta",
|
17 |
+
"snake_logscale": true,
|
18 |
+
"upsample_rates": [
|
19 |
+
8,
|
20 |
+
8,
|
21 |
+
2,
|
22 |
+
2,
|
23 |
+
],
|
24 |
+
"upsample_kernel_sizes": [
|
25 |
+
16,
|
26 |
+
16,
|
27 |
+
4,
|
28 |
+
4
|
29 |
+
],
|
30 |
+
"upsample_initial_channel": 512,
|
31 |
+
"resblock_kernel_sizes": [
|
32 |
+
3,
|
33 |
+
7,
|
34 |
+
11
|
35 |
+
],
|
36 |
+
"resblock_dilation_sizes": [
|
37 |
+
[
|
38 |
+
1,
|
39 |
+
3,
|
40 |
+
5
|
41 |
+
],
|
42 |
+
[
|
43 |
+
1,
|
44 |
+
3,
|
45 |
+
5
|
46 |
+
],
|
47 |
+
[
|
48 |
+
1,
|
49 |
+
3,
|
50 |
+
5
|
51 |
+
]
|
52 |
+
]
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"train": {
|
56 |
+
"criterions": [
|
57 |
+
"feature",
|
58 |
+
"discriminator",
|
59 |
+
"generator",
|
60 |
+
"mel",
|
61 |
+
]
|
62 |
+
},
|
63 |
+
"inference": {
|
64 |
+
"batch_size": 1,
|
65 |
+
}
|
66 |
+
}
|
egs/vocoder/gan/bigvgan/run.sh
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
######## Build Experiment Environment ###########
|
7 |
+
exp_dir=$(cd `dirname $0`; pwd)
|
8 |
+
work_dir=$(dirname $(dirname $(dirname $(dirname $exp_dir))))
|
9 |
+
|
10 |
+
export WORK_DIR=$work_dir
|
11 |
+
export PYTHONPATH=$work_dir
|
12 |
+
export PYTHONIOENCODING=UTF-8
|
13 |
+
|
14 |
+
######## Parse the Given Parameters from the Commond ###########
|
15 |
+
options=$(getopt -o c:n:s --long gpu:,config:,name:,stage:,resume:,checkpoint:,resume_type:,infer_mode:,infer_datasets:,infer_feature_dir:,infer_audio_dir:,infer_expt_dir:,infer_output_dir: -- "$@")
|
16 |
+
eval set -- "$options"
|
17 |
+
|
18 |
+
while true; do
|
19 |
+
case $1 in
|
20 |
+
# Experimental Configuration File
|
21 |
+
-c | --config) shift; exp_config=$1 ; shift ;;
|
22 |
+
# Experimental Name
|
23 |
+
-n | --name) shift; exp_name=$1 ; shift ;;
|
24 |
+
# Running Stage
|
25 |
+
-s | --stage) shift; running_stage=$1 ; shift ;;
|
26 |
+
# Visible GPU machines. The default value is "0".
|
27 |
+
--gpu) shift; gpu=$1 ; shift ;;
|
28 |
+
|
29 |
+
# [Only for Training] Resume configuration
|
30 |
+
--resume) shift; resume=$1 ; shift ;;
|
31 |
+
# [Only for Training] The specific checkpoint path that you want to resume from.
|
32 |
+
--checkpoint) shift; cehckpoint=$1 ; shift ;;
|
33 |
+
# [Only for Training] `resume` for loading all the things (including model weights, optimizer, scheduler, and random states). `finetune` for loading only the model weights.
|
34 |
+
--resume_type) shift; resume_type=$1 ; shift ;;
|
35 |
+
|
36 |
+
# [Only for Inference] The inference mode
|
37 |
+
--infer_mode) shift; infer_mode=$1 ; shift ;;
|
38 |
+
# [Only for Inference] The inferenced datasets
|
39 |
+
--infer_datasets) shift; infer_datasets=$1 ; shift ;;
|
40 |
+
# [Only for Inference] The feature dir for inference
|
41 |
+
--infer_feature_dir) shift; infer_feature_dir=$1 ; shift ;;
|
42 |
+
# [Only for Inference] The audio dir for inference
|
43 |
+
--infer_audio_dir) shift; infer_audio_dir=$1 ; shift ;;
|
44 |
+
# [Only for Inference] The experiment dir. The value is like "[Your path to save logs and checkpoints]/[YourExptName]"
|
45 |
+
--infer_expt_dir) shift; infer_expt_dir=$1 ; shift ;;
|
46 |
+
# [Only for Inference] The output dir to save inferred audios. Its default value is "$expt_dir/result"
|
47 |
+
--infer_output_dir) shift; infer_output_dir=$1 ; shift ;;
|
48 |
+
|
49 |
+
--) shift ; break ;;
|
50 |
+
*) echo "Invalid option: $1" exit 1 ;;
|
51 |
+
esac
|
52 |
+
done
|
53 |
+
|
54 |
+
|
55 |
+
### Value check ###
|
56 |
+
if [ -z "$running_stage" ]; then
|
57 |
+
echo "[Error] Please specify the running stage"
|
58 |
+
exit 1
|
59 |
+
fi
|
60 |
+
|
61 |
+
if [ -z "$exp_config" ]; then
|
62 |
+
exp_config="${exp_dir}"/exp_config.json
|
63 |
+
fi
|
64 |
+
echo "Exprimental Configuration File: $exp_config"
|
65 |
+
|
66 |
+
if [ -z "$gpu" ]; then
|
67 |
+
gpu="0"
|
68 |
+
fi
|
69 |
+
|
70 |
+
######## Features Extraction ###########
|
71 |
+
if [ $running_stage -eq 1 ]; then
|
72 |
+
CUDA_VISIBLE_DEVICES=$gpu python "${work_dir}"/bins/vocoder/preprocess.py \
|
73 |
+
--config $exp_config \
|
74 |
+
--num_workers 8
|
75 |
+
fi
|
76 |
+
|
77 |
+
######## Training ###########
|
78 |
+
if [ $running_stage -eq 2 ]; then
|
79 |
+
if [ -z "$exp_name" ]; then
|
80 |
+
echo "[Error] Please specify the experiments name"
|
81 |
+
exit 1
|
82 |
+
fi
|
83 |
+
echo "Exprimental Name: $exp_name"
|
84 |
+
|
85 |
+
if [ "$resume" = true ]; then
|
86 |
+
echo "Automatically resume from the experimental dir..."
|
87 |
+
CUDA_VISIBLE_DEVICES="$gpu" accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
88 |
+
--config "$exp_config" \
|
89 |
+
--exp_name "$exp_name" \
|
90 |
+
--log_level info \
|
91 |
+
--resume
|
92 |
+
else
|
93 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
94 |
+
--config "$exp_config" \
|
95 |
+
--exp_name "$exp_name" \
|
96 |
+
--log_level info \
|
97 |
+
--checkpoint "$checkpoint" \
|
98 |
+
--resume_type "$resume_type"
|
99 |
+
fi
|
100 |
+
fi
|
101 |
+
|
102 |
+
######## Inference/Conversion ###########
|
103 |
+
if [ $running_stage -eq 3 ]; then
|
104 |
+
if [ -z "$infer_expt_dir" ]; then
|
105 |
+
echo "[Error] Please specify the experimental directionary. The value is like [Your path to save logs and checkpoints]/[YourExptName]"
|
106 |
+
exit 1
|
107 |
+
fi
|
108 |
+
|
109 |
+
if [ -z "$infer_output_dir" ]; then
|
110 |
+
infer_output_dir="$infer_expt_dir/result"
|
111 |
+
fi
|
112 |
+
|
113 |
+
if [ $infer_mode = "infer_from_dataset" ]; then
|
114 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
115 |
+
--config $exp_config \
|
116 |
+
--infer_mode $infer_mode \
|
117 |
+
--infer_datasets $infer_datasets \
|
118 |
+
--vocoder_dir $infer_expt_dir \
|
119 |
+
--output_dir $infer_output_dir \
|
120 |
+
--log_level debug
|
121 |
+
fi
|
122 |
+
|
123 |
+
if [ $infer_mode = "infer_from_feature" ]; then
|
124 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
125 |
+
--config $exp_config \
|
126 |
+
--infer_mode $infer_mode \
|
127 |
+
--feature_folder $infer_feature_dir \
|
128 |
+
--vocoder_dir $infer_expt_dir \
|
129 |
+
--output_dir $infer_output_dir \
|
130 |
+
--log_level debug
|
131 |
+
fi
|
132 |
+
|
133 |
+
if [ $infer_mode = "infer_from_audio" ]; then
|
134 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
135 |
+
--config $exp_config \
|
136 |
+
--infer_mode $infer_mode \
|
137 |
+
--audio_folder $infer_audio_dir \
|
138 |
+
--vocoder_dir $infer_expt_dir \
|
139 |
+
--output_dir $infer_output_dir \
|
140 |
+
--log_level debug
|
141 |
+
fi
|
142 |
+
|
143 |
+
fi
|
egs/vocoder/gan/bigvgan_large/exp_config.json
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "egs/vocoder/gan/exp_config_base.json",
|
3 |
+
"preprocess": {
|
4 |
+
// acoustic features
|
5 |
+
"extract_mel": true,
|
6 |
+
"extract_audio": true,
|
7 |
+
|
8 |
+
// Features used for model training
|
9 |
+
"use_mel": true,
|
10 |
+
"use_audio": true
|
11 |
+
},
|
12 |
+
"model": {
|
13 |
+
"generator": "bigvgan",
|
14 |
+
"bigvgan": {
|
15 |
+
"resblock": "1",
|
16 |
+
"activation": "snakebeta",
|
17 |
+
"snake_logscale": true,
|
18 |
+
"upsample_rates": [
|
19 |
+
4,
|
20 |
+
4,
|
21 |
+
2,
|
22 |
+
2,
|
23 |
+
2,
|
24 |
+
2
|
25 |
+
],
|
26 |
+
"upsample_kernel_sizes": [
|
27 |
+
8,
|
28 |
+
8,
|
29 |
+
4,
|
30 |
+
4,
|
31 |
+
4,
|
32 |
+
4
|
33 |
+
],
|
34 |
+
"upsample_initial_channel": 1536,
|
35 |
+
"resblock_kernel_sizes": [
|
36 |
+
3,
|
37 |
+
7,
|
38 |
+
11
|
39 |
+
],
|
40 |
+
"resblock_dilation_sizes": [
|
41 |
+
[
|
42 |
+
1,
|
43 |
+
3,
|
44 |
+
5
|
45 |
+
],
|
46 |
+
[
|
47 |
+
1,
|
48 |
+
3,
|
49 |
+
5
|
50 |
+
],
|
51 |
+
[
|
52 |
+
1,
|
53 |
+
3,
|
54 |
+
5
|
55 |
+
]
|
56 |
+
]
|
57 |
+
},
|
58 |
+
},
|
59 |
+
"train": {
|
60 |
+
"criterions": [
|
61 |
+
"feature",
|
62 |
+
"discriminator",
|
63 |
+
"generator",
|
64 |
+
"mel",
|
65 |
+
]
|
66 |
+
},
|
67 |
+
"inference": {
|
68 |
+
"batch_size": 1,
|
69 |
+
}
|
70 |
+
}
|
egs/vocoder/gan/bigvgan_large/run.sh
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
######## Build Experiment Environment ###########
|
7 |
+
exp_dir=$(cd `dirname $0`; pwd)
|
8 |
+
work_dir=$(dirname $(dirname $(dirname $(dirname $exp_dir))))
|
9 |
+
|
10 |
+
export WORK_DIR=$work_dir
|
11 |
+
export PYTHONPATH=$work_dir
|
12 |
+
export PYTHONIOENCODING=UTF-8
|
13 |
+
|
14 |
+
######## Parse the Given Parameters from the Commond ###########
|
15 |
+
options=$(getopt -o c:n:s --long gpu:,config:,name:,stage:,resume:,checkpoint:,resume_type:,infer_mode:,infer_datasets:,infer_feature_dir:,infer_audio_dir:,infer_expt_dir:,infer_output_dir: -- "$@")
|
16 |
+
eval set -- "$options"
|
17 |
+
|
18 |
+
while true; do
|
19 |
+
case $1 in
|
20 |
+
# Experimental Configuration File
|
21 |
+
-c | --config) shift; exp_config=$1 ; shift ;;
|
22 |
+
# Experimental Name
|
23 |
+
-n | --name) shift; exp_name=$1 ; shift ;;
|
24 |
+
# Running Stage
|
25 |
+
-s | --stage) shift; running_stage=$1 ; shift ;;
|
26 |
+
# Visible GPU machines. The default value is "0".
|
27 |
+
--gpu) shift; gpu=$1 ; shift ;;
|
28 |
+
|
29 |
+
# [Only for Training] Resume configuration
|
30 |
+
--resume) shift; resume=$1 ; shift ;;
|
31 |
+
# [Only for Training] The specific checkpoint path that you want to resume from.
|
32 |
+
--checkpoint) shift; cehckpoint=$1 ; shift ;;
|
33 |
+
# [Only for Training] `resume` for loading all the things (including model weights, optimizer, scheduler, and random states). `finetune` for loading only the model weights.
|
34 |
+
--resume_type) shift; resume_type=$1 ; shift ;;
|
35 |
+
|
36 |
+
# [Only for Inference] The inference mode
|
37 |
+
--infer_mode) shift; infer_mode=$1 ; shift ;;
|
38 |
+
# [Only for Inference] The inferenced datasets
|
39 |
+
--infer_datasets) shift; infer_datasets=$1 ; shift ;;
|
40 |
+
# [Only for Inference] The feature dir for inference
|
41 |
+
--infer_feature_dir) shift; infer_feature_dir=$1 ; shift ;;
|
42 |
+
# [Only for Inference] The audio dir for inference
|
43 |
+
--infer_audio_dir) shift; infer_audio_dir=$1 ; shift ;;
|
44 |
+
# [Only for Inference] The experiment dir. The value is like "[Your path to save logs and checkpoints]/[YourExptName]"
|
45 |
+
--infer_expt_dir) shift; infer_expt_dir=$1 ; shift ;;
|
46 |
+
# [Only for Inference] The output dir to save inferred audios. Its default value is "$expt_dir/result"
|
47 |
+
--infer_output_dir) shift; infer_output_dir=$1 ; shift ;;
|
48 |
+
|
49 |
+
--) shift ; break ;;
|
50 |
+
*) echo "Invalid option: $1" exit 1 ;;
|
51 |
+
esac
|
52 |
+
done
|
53 |
+
|
54 |
+
|
55 |
+
### Value check ###
|
56 |
+
if [ -z "$running_stage" ]; then
|
57 |
+
echo "[Error] Please specify the running stage"
|
58 |
+
exit 1
|
59 |
+
fi
|
60 |
+
|
61 |
+
if [ -z "$exp_config" ]; then
|
62 |
+
exp_config="${exp_dir}"/exp_config.json
|
63 |
+
fi
|
64 |
+
echo "Exprimental Configuration File: $exp_config"
|
65 |
+
|
66 |
+
if [ -z "$gpu" ]; then
|
67 |
+
gpu="0"
|
68 |
+
fi
|
69 |
+
|
70 |
+
######## Features Extraction ###########
|
71 |
+
if [ $running_stage -eq 1 ]; then
|
72 |
+
CUDA_VISIBLE_DEVICES=$gpu python "${work_dir}"/bins/vocoder/preprocess.py \
|
73 |
+
--config $exp_config \
|
74 |
+
--num_workers 8
|
75 |
+
fi
|
76 |
+
|
77 |
+
######## Training ###########
|
78 |
+
if [ $running_stage -eq 2 ]; then
|
79 |
+
if [ -z "$exp_name" ]; then
|
80 |
+
echo "[Error] Please specify the experiments name"
|
81 |
+
exit 1
|
82 |
+
fi
|
83 |
+
echo "Exprimental Name: $exp_name"
|
84 |
+
|
85 |
+
if [ "$resume" = true ]; then
|
86 |
+
echo "Automatically resume from the experimental dir..."
|
87 |
+
CUDA_VISIBLE_DEVICES="$gpu" accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
88 |
+
--config "$exp_config" \
|
89 |
+
--exp_name "$exp_name" \
|
90 |
+
--log_level info \
|
91 |
+
--resume
|
92 |
+
else
|
93 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
94 |
+
--config "$exp_config" \
|
95 |
+
--exp_name "$exp_name" \
|
96 |
+
--log_level info \
|
97 |
+
--checkpoint "$checkpoint" \
|
98 |
+
--resume_type "$resume_type"
|
99 |
+
fi
|
100 |
+
fi
|
101 |
+
|
102 |
+
######## Inference/Conversion ###########
|
103 |
+
if [ $running_stage -eq 3 ]; then
|
104 |
+
if [ -z "$infer_expt_dir" ]; then
|
105 |
+
echo "[Error] Please specify the experimental directionary. The value is like [Your path to save logs and checkpoints]/[YourExptName]"
|
106 |
+
exit 1
|
107 |
+
fi
|
108 |
+
|
109 |
+
if [ -z "$infer_output_dir" ]; then
|
110 |
+
infer_output_dir="$infer_expt_dir/result"
|
111 |
+
fi
|
112 |
+
|
113 |
+
if [ $infer_mode = "infer_from_dataset" ]; then
|
114 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
115 |
+
--config $exp_config \
|
116 |
+
--infer_mode $infer_mode \
|
117 |
+
--infer_datasets $infer_datasets \
|
118 |
+
--vocoder_dir $infer_expt_dir \
|
119 |
+
--output_dir $infer_output_dir \
|
120 |
+
--log_level debug
|
121 |
+
fi
|
122 |
+
|
123 |
+
if [ $infer_mode = "infer_from_feature" ]; then
|
124 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
125 |
+
--config $exp_config \
|
126 |
+
--infer_mode $infer_mode \
|
127 |
+
--feature_folder $infer_feature_dir \
|
128 |
+
--vocoder_dir $infer_expt_dir \
|
129 |
+
--output_dir $infer_output_dir \
|
130 |
+
--log_level debug
|
131 |
+
fi
|
132 |
+
|
133 |
+
if [ $infer_mode = "infer_from_audio" ]; then
|
134 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
135 |
+
--config $exp_config \
|
136 |
+
--infer_mode $infer_mode \
|
137 |
+
--audio_folder $infer_audio_dir \
|
138 |
+
--vocoder_dir $infer_expt_dir \
|
139 |
+
--output_dir $infer_output_dir \
|
140 |
+
--log_level debug
|
141 |
+
fi
|
142 |
+
|
143 |
+
fi
|
egs/vocoder/gan/exp_config_base.json
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "config/vocoder.json",
|
3 |
+
"model_type": "GANVocoder",
|
4 |
+
// TODO: Choose your needed datasets
|
5 |
+
"dataset": [
|
6 |
+
"csd",
|
7 |
+
"kising",
|
8 |
+
"m4singer",
|
9 |
+
"nus48e",
|
10 |
+
"opencpop",
|
11 |
+
"opensinger",
|
12 |
+
"opera",
|
13 |
+
"pjs",
|
14 |
+
"popbutfy",
|
15 |
+
"popcs",
|
16 |
+
"ljspeech",
|
17 |
+
"vctk",
|
18 |
+
"libritts",
|
19 |
+
],
|
20 |
+
"dataset_path": {
|
21 |
+
// TODO: Fill in your dataset path
|
22 |
+
"csd": "[dataset path]",
|
23 |
+
"kising": "[dataset path]",
|
24 |
+
"m4singer": "[dataset path]",
|
25 |
+
"nus48e": "[dataset path]",
|
26 |
+
"opencpop": "[dataset path]",
|
27 |
+
"opensinger": "[dataset path]",
|
28 |
+
"opera": "[dataset path]",
|
29 |
+
"pjs": "[dataset path]",
|
30 |
+
"popbutfy": "[dataset path]",
|
31 |
+
"popcs": "[dataset path]",
|
32 |
+
"ljspeech": "[dataset path]",
|
33 |
+
"vctk": "[dataset path]",
|
34 |
+
"libritts": "[dataset path]",
|
35 |
+
},
|
36 |
+
// TODO: Fill in the output log path
|
37 |
+
"log_dir": "ckpts/vocoder",
|
38 |
+
"preprocess": {
|
39 |
+
// Acoustic features
|
40 |
+
"extract_mel": true,
|
41 |
+
"extract_audio": true,
|
42 |
+
"extract_pitch": false,
|
43 |
+
"extract_uv": false,
|
44 |
+
"pitch_extractor": "parselmouth",
|
45 |
+
|
46 |
+
// Features used for model training
|
47 |
+
"use_mel": true,
|
48 |
+
"use_frame_pitch": false,
|
49 |
+
"use_uv": false,
|
50 |
+
"use_audio": true,
|
51 |
+
|
52 |
+
// TODO: Fill in the output data path
|
53 |
+
"processed_dir": "data/",
|
54 |
+
"n_mel": 100,
|
55 |
+
"sample_rate": 24000
|
56 |
+
},
|
57 |
+
"model": {
|
58 |
+
// TODO: Choose your needed discriminators
|
59 |
+
"discriminators": [
|
60 |
+
"msd",
|
61 |
+
"mpd",
|
62 |
+
"msstftd",
|
63 |
+
"mssbcqtd",
|
64 |
+
],
|
65 |
+
"mpd": {
|
66 |
+
"mpd_reshapes": [
|
67 |
+
2,
|
68 |
+
3,
|
69 |
+
5,
|
70 |
+
7,
|
71 |
+
11
|
72 |
+
],
|
73 |
+
"use_spectral_norm": false,
|
74 |
+
"discriminator_channel_mult_factor": 1
|
75 |
+
},
|
76 |
+
"mrd": {
|
77 |
+
"resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]],
|
78 |
+
"use_spectral_norm": false,
|
79 |
+
"discriminator_channel_mult_factor": 1,
|
80 |
+
"mrd_override": false
|
81 |
+
},
|
82 |
+
"msstftd": {
|
83 |
+
"filters": 32
|
84 |
+
},
|
85 |
+
"mssbcqtd": {
|
86 |
+
hop_lengths: [512, 256, 256],
|
87 |
+
filters: 32,
|
88 |
+
max_filters: 1024,
|
89 |
+
filters_scale: 1,
|
90 |
+
dilations: [1, 2, 4],
|
91 |
+
in_channels: 1,
|
92 |
+
out_channels: 1,
|
93 |
+
n_octaves: [9, 9, 9],
|
94 |
+
bins_per_octaves: [24, 36, 48]
|
95 |
+
},
|
96 |
+
},
|
97 |
+
"train": {
|
98 |
+
// TODO: Choose a suitable batch size, training epoch, and save stride
|
99 |
+
"batch_size": 32,
|
100 |
+
"max_epoch": 1000000,
|
101 |
+
"save_checkpoint_stride": [20],
|
102 |
+
"adamw": {
|
103 |
+
"lr": 2.0e-4,
|
104 |
+
"adam_b1": 0.8,
|
105 |
+
"adam_b2": 0.99
|
106 |
+
},
|
107 |
+
"exponential_lr": {
|
108 |
+
"lr_decay": 0.999
|
109 |
+
},
|
110 |
+
}
|
111 |
+
}
|
egs/vocoder/gan/hifigan/exp_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "egs/vocoder/gan/exp_config_base.json",
|
3 |
+
"preprocess": {
|
4 |
+
// acoustic features
|
5 |
+
"extract_mel": true,
|
6 |
+
"extract_audio": true,
|
7 |
+
|
8 |
+
// Features used for model training
|
9 |
+
"use_mel": true,
|
10 |
+
"use_audio": true
|
11 |
+
},
|
12 |
+
"model": {
|
13 |
+
"generator": "hifigan",
|
14 |
+
"hifigan": {
|
15 |
+
"resblock": "2",
|
16 |
+
"upsample_rates": [
|
17 |
+
8,
|
18 |
+
8,
|
19 |
+
4
|
20 |
+
],
|
21 |
+
"upsample_kernel_sizes": [
|
22 |
+
16,
|
23 |
+
16,
|
24 |
+
8
|
25 |
+
],
|
26 |
+
"upsample_initial_channel": 256,
|
27 |
+
"resblock_kernel_sizes": [
|
28 |
+
3,
|
29 |
+
5,
|
30 |
+
7
|
31 |
+
],
|
32 |
+
"resblock_dilation_sizes": [
|
33 |
+
[
|
34 |
+
1,
|
35 |
+
2
|
36 |
+
],
|
37 |
+
[
|
38 |
+
2,
|
39 |
+
6
|
40 |
+
],
|
41 |
+
[
|
42 |
+
3,
|
43 |
+
12
|
44 |
+
]
|
45 |
+
]
|
46 |
+
}
|
47 |
+
},
|
48 |
+
"train": {
|
49 |
+
"criterions": [
|
50 |
+
"feature",
|
51 |
+
"discriminator",
|
52 |
+
"generator",
|
53 |
+
"mel",
|
54 |
+
]
|
55 |
+
},
|
56 |
+
"inference": {
|
57 |
+
"batch_size": 1,
|
58 |
+
}
|
59 |
+
}
|
egs/vocoder/gan/hifigan/run.sh
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
######## Build Experiment Environment ###########
|
7 |
+
exp_dir=$(cd `dirname $0`; pwd)
|
8 |
+
work_dir=$(dirname $(dirname $(dirname $(dirname $exp_dir))))
|
9 |
+
|
10 |
+
export WORK_DIR=$work_dir
|
11 |
+
export PYTHONPATH=$work_dir
|
12 |
+
export PYTHONIOENCODING=UTF-8
|
13 |
+
|
14 |
+
######## Parse the Given Parameters from the Commond ###########
|
15 |
+
options=$(getopt -o c:n:s --long gpu:,config:,name:,stage:,resume:,checkpoint:,resume_type:,infer_mode:,infer_datasets:,infer_feature_dir:,infer_audio_dir:,infer_expt_dir:,infer_output_dir: -- "$@")
|
16 |
+
eval set -- "$options"
|
17 |
+
|
18 |
+
while true; do
|
19 |
+
case $1 in
|
20 |
+
# Experimental Configuration File
|
21 |
+
-c | --config) shift; exp_config=$1 ; shift ;;
|
22 |
+
# Experimental Name
|
23 |
+
-n | --name) shift; exp_name=$1 ; shift ;;
|
24 |
+
# Running Stage
|
25 |
+
-s | --stage) shift; running_stage=$1 ; shift ;;
|
26 |
+
# Visible GPU machines. The default value is "0".
|
27 |
+
--gpu) shift; gpu=$1 ; shift ;;
|
28 |
+
|
29 |
+
# [Only for Training] Resume configuration
|
30 |
+
--resume) shift; resume=$1 ; shift ;;
|
31 |
+
# [Only for Training] The specific checkpoint path that you want to resume from.
|
32 |
+
--checkpoint) shift; cehckpoint=$1 ; shift ;;
|
33 |
+
# [Only for Training] `resume` for loading all the things (including model weights, optimizer, scheduler, and random states). `finetune` for loading only the model weights.
|
34 |
+
--resume_type) shift; resume_type=$1 ; shift ;;
|
35 |
+
|
36 |
+
# [Only for Inference] The inference mode
|
37 |
+
--infer_mode) shift; infer_mode=$1 ; shift ;;
|
38 |
+
# [Only for Inference] The inferenced datasets
|
39 |
+
--infer_datasets) shift; infer_datasets=$1 ; shift ;;
|
40 |
+
# [Only for Inference] The feature dir for inference
|
41 |
+
--infer_feature_dir) shift; infer_feature_dir=$1 ; shift ;;
|
42 |
+
# [Only for Inference] The audio dir for inference
|
43 |
+
--infer_audio_dir) shift; infer_audio_dir=$1 ; shift ;;
|
44 |
+
# [Only for Inference] The experiment dir. The value is like "[Your path to save logs and checkpoints]/[YourExptName]"
|
45 |
+
--infer_expt_dir) shift; infer_expt_dir=$1 ; shift ;;
|
46 |
+
# [Only for Inference] The output dir to save inferred audios. Its default value is "$expt_dir/result"
|
47 |
+
--infer_output_dir) shift; infer_output_dir=$1 ; shift ;;
|
48 |
+
|
49 |
+
--) shift ; break ;;
|
50 |
+
*) echo "Invalid option: $1" exit 1 ;;
|
51 |
+
esac
|
52 |
+
done
|
53 |
+
|
54 |
+
|
55 |
+
### Value check ###
|
56 |
+
if [ -z "$running_stage" ]; then
|
57 |
+
echo "[Error] Please specify the running stage"
|
58 |
+
exit 1
|
59 |
+
fi
|
60 |
+
|
61 |
+
if [ -z "$exp_config" ]; then
|
62 |
+
exp_config="${exp_dir}"/exp_config.json
|
63 |
+
fi
|
64 |
+
echo "Exprimental Configuration File: $exp_config"
|
65 |
+
|
66 |
+
if [ -z "$gpu" ]; then
|
67 |
+
gpu="0"
|
68 |
+
fi
|
69 |
+
|
70 |
+
######## Features Extraction ###########
|
71 |
+
if [ $running_stage -eq 1 ]; then
|
72 |
+
CUDA_VISIBLE_DEVICES=$gpu python "${work_dir}"/bins/vocoder/preprocess.py \
|
73 |
+
--config $exp_config \
|
74 |
+
--num_workers 8
|
75 |
+
fi
|
76 |
+
|
77 |
+
######## Training ###########
|
78 |
+
if [ $running_stage -eq 2 ]; then
|
79 |
+
if [ -z "$exp_name" ]; then
|
80 |
+
echo "[Error] Please specify the experiments name"
|
81 |
+
exit 1
|
82 |
+
fi
|
83 |
+
echo "Exprimental Name: $exp_name"
|
84 |
+
|
85 |
+
if [ "$resume" = true ]; then
|
86 |
+
echo "Automatically resume from the experimental dir..."
|
87 |
+
CUDA_VISIBLE_DEVICES="$gpu" accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
88 |
+
--config "$exp_config" \
|
89 |
+
--exp_name "$exp_name" \
|
90 |
+
--log_level info \
|
91 |
+
--resume
|
92 |
+
else
|
93 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
94 |
+
--config "$exp_config" \
|
95 |
+
--exp_name "$exp_name" \
|
96 |
+
--log_level info \
|
97 |
+
--checkpoint "$checkpoint" \
|
98 |
+
--resume_type "$resume_type"
|
99 |
+
fi
|
100 |
+
fi
|
101 |
+
|
102 |
+
######## Inference/Conversion ###########
|
103 |
+
if [ $running_stage -eq 3 ]; then
|
104 |
+
if [ -z "$infer_expt_dir" ]; then
|
105 |
+
echo "[Error] Please specify the experimental directionary. The value is like [Your path to save logs and checkpoints]/[YourExptName]"
|
106 |
+
exit 1
|
107 |
+
fi
|
108 |
+
|
109 |
+
if [ -z "$infer_output_dir" ]; then
|
110 |
+
infer_output_dir="$infer_expt_dir/result"
|
111 |
+
fi
|
112 |
+
|
113 |
+
if [ $infer_mode = "infer_from_dataset" ]; then
|
114 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
115 |
+
--config $exp_config \
|
116 |
+
--infer_mode $infer_mode \
|
117 |
+
--infer_datasets $infer_datasets \
|
118 |
+
--vocoder_dir $infer_expt_dir \
|
119 |
+
--output_dir $infer_output_dir \
|
120 |
+
--log_level debug
|
121 |
+
fi
|
122 |
+
|
123 |
+
if [ $infer_mode = "infer_from_feature" ]; then
|
124 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
125 |
+
--config $exp_config \
|
126 |
+
--infer_mode $infer_mode \
|
127 |
+
--feature_folder $infer_feature_dir \
|
128 |
+
--vocoder_dir $infer_expt_dir \
|
129 |
+
--output_dir $infer_output_dir \
|
130 |
+
--log_level debug
|
131 |
+
fi
|
132 |
+
|
133 |
+
if [ $infer_mode = "infer_from_audio" ]; then
|
134 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
135 |
+
--config $exp_config \
|
136 |
+
--infer_mode $infer_mode \
|
137 |
+
--audio_folder $infer_audio_dir \
|
138 |
+
--vocoder_dir $infer_expt_dir \
|
139 |
+
--output_dir $infer_output_dir \
|
140 |
+
--log_level debug
|
141 |
+
fi
|
142 |
+
|
143 |
+
fi
|
egs/vocoder/gan/melgan/exp_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "egs/vocoder/gan/exp_config_base.json",
|
3 |
+
"preprocess": {
|
4 |
+
// acoustic features
|
5 |
+
"extract_mel": true,
|
6 |
+
"extract_audio": true,
|
7 |
+
|
8 |
+
// Features used for model training
|
9 |
+
"use_mel": true,
|
10 |
+
"use_audio": true
|
11 |
+
},
|
12 |
+
"model": {
|
13 |
+
"generator": "melgan",
|
14 |
+
"melgan": {
|
15 |
+
"ratios": [8, 8, 2, 2],
|
16 |
+
"ngf": 32,
|
17 |
+
"n_residual_layers": 3,
|
18 |
+
"num_D": 3,
|
19 |
+
"ndf": 16,
|
20 |
+
"n_layers": 4,
|
21 |
+
"downsampling_factor": 4
|
22 |
+
},
|
23 |
+
},
|
24 |
+
"train": {
|
25 |
+
"criterions": [
|
26 |
+
"feature",
|
27 |
+
"discriminator",
|
28 |
+
"generator",
|
29 |
+
]
|
30 |
+
},
|
31 |
+
"inference": {
|
32 |
+
"batch_size": 1,
|
33 |
+
}
|
34 |
+
}
|
egs/vocoder/gan/melgan/run.sh
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
######## Build Experiment Environment ###########
|
7 |
+
exp_dir=$(cd `dirname $0`; pwd)
|
8 |
+
work_dir=$(dirname $(dirname $(dirname $(dirname $exp_dir))))
|
9 |
+
|
10 |
+
export WORK_DIR=$work_dir
|
11 |
+
export PYTHONPATH=$work_dir
|
12 |
+
export PYTHONIOENCODING=UTF-8
|
13 |
+
|
14 |
+
######## Parse the Given Parameters from the Commond ###########
|
15 |
+
options=$(getopt -o c:n:s --long gpu:,config:,name:,stage:,resume:,checkpoint:,resume_type:,infer_mode:,infer_datasets:,infer_feature_dir:,infer_audio_dir:,infer_expt_dir:,infer_output_dir: -- "$@")
|
16 |
+
eval set -- "$options"
|
17 |
+
|
18 |
+
while true; do
|
19 |
+
case $1 in
|
20 |
+
# Experimental Configuration File
|
21 |
+
-c | --config) shift; exp_config=$1 ; shift ;;
|
22 |
+
# Experimental Name
|
23 |
+
-n | --name) shift; exp_name=$1 ; shift ;;
|
24 |
+
# Running Stage
|
25 |
+
-s | --stage) shift; running_stage=$1 ; shift ;;
|
26 |
+
# Visible GPU machines. The default value is "0".
|
27 |
+
--gpu) shift; gpu=$1 ; shift ;;
|
28 |
+
|
29 |
+
# [Only for Training] Resume configuration
|
30 |
+
--resume) shift; resume=$1 ; shift ;;
|
31 |
+
# [Only for Training] The specific checkpoint path that you want to resume from.
|
32 |
+
--checkpoint) shift; cehckpoint=$1 ; shift ;;
|
33 |
+
# [Only for Training] `resume` for loading all the things (including model weights, optimizer, scheduler, and random states). `finetune` for loading only the model weights.
|
34 |
+
--resume_type) shift; resume_type=$1 ; shift ;;
|
35 |
+
|
36 |
+
# [Only for Inference] The inference mode
|
37 |
+
--infer_mode) shift; infer_mode=$1 ; shift ;;
|
38 |
+
# [Only for Inference] The inferenced datasets
|
39 |
+
--infer_datasets) shift; infer_datasets=$1 ; shift ;;
|
40 |
+
# [Only for Inference] The feature dir for inference
|
41 |
+
--infer_feature_dir) shift; infer_feature_dir=$1 ; shift ;;
|
42 |
+
# [Only for Inference] The audio dir for inference
|
43 |
+
--infer_audio_dir) shift; infer_audio_dir=$1 ; shift ;;
|
44 |
+
# [Only for Inference] The experiment dir. The value is like "[Your path to save logs and checkpoints]/[YourExptName]"
|
45 |
+
--infer_expt_dir) shift; infer_expt_dir=$1 ; shift ;;
|
46 |
+
# [Only for Inference] The output dir to save inferred audios. Its default value is "$expt_dir/result"
|
47 |
+
--infer_output_dir) shift; infer_output_dir=$1 ; shift ;;
|
48 |
+
|
49 |
+
--) shift ; break ;;
|
50 |
+
*) echo "Invalid option: $1" exit 1 ;;
|
51 |
+
esac
|
52 |
+
done
|
53 |
+
|
54 |
+
|
55 |
+
### Value check ###
|
56 |
+
if [ -z "$running_stage" ]; then
|
57 |
+
echo "[Error] Please specify the running stage"
|
58 |
+
exit 1
|
59 |
+
fi
|
60 |
+
|
61 |
+
if [ -z "$exp_config" ]; then
|
62 |
+
exp_config="${exp_dir}"/exp_config.json
|
63 |
+
fi
|
64 |
+
echo "Exprimental Configuration File: $exp_config"
|
65 |
+
|
66 |
+
if [ -z "$gpu" ]; then
|
67 |
+
gpu="0"
|
68 |
+
fi
|
69 |
+
|
70 |
+
######## Features Extraction ###########
|
71 |
+
if [ $running_stage -eq 1 ]; then
|
72 |
+
CUDA_VISIBLE_DEVICES=$gpu python "${work_dir}"/bins/vocoder/preprocess.py \
|
73 |
+
--config $exp_config \
|
74 |
+
--num_workers 8
|
75 |
+
fi
|
76 |
+
|
77 |
+
######## Training ###########
|
78 |
+
if [ $running_stage -eq 2 ]; then
|
79 |
+
if [ -z "$exp_name" ]; then
|
80 |
+
echo "[Error] Please specify the experiments name"
|
81 |
+
exit 1
|
82 |
+
fi
|
83 |
+
echo "Exprimental Name: $exp_name"
|
84 |
+
|
85 |
+
if [ "$resume" = true ]; then
|
86 |
+
echo "Automatically resume from the experimental dir..."
|
87 |
+
CUDA_VISIBLE_DEVICES="$gpu" accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
88 |
+
--config "$exp_config" \
|
89 |
+
--exp_name "$exp_name" \
|
90 |
+
--log_level info \
|
91 |
+
--resume
|
92 |
+
else
|
93 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
94 |
+
--config "$exp_config" \
|
95 |
+
--exp_name "$exp_name" \
|
96 |
+
--log_level info \
|
97 |
+
--checkpoint "$checkpoint" \
|
98 |
+
--resume_type "$resume_type"
|
99 |
+
fi
|
100 |
+
fi
|
101 |
+
|
102 |
+
######## Inference/Conversion ###########
|
103 |
+
if [ $running_stage -eq 3 ]; then
|
104 |
+
if [ -z "$infer_expt_dir" ]; then
|
105 |
+
echo "[Error] Please specify the experimental directionary. The value is like [Your path to save logs and checkpoints]/[YourExptName]"
|
106 |
+
exit 1
|
107 |
+
fi
|
108 |
+
|
109 |
+
if [ -z "$infer_output_dir" ]; then
|
110 |
+
infer_output_dir="$infer_expt_dir/result"
|
111 |
+
fi
|
112 |
+
|
113 |
+
if [ $infer_mode = "infer_from_dataset" ]; then
|
114 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
115 |
+
--config $exp_config \
|
116 |
+
--infer_mode $infer_mode \
|
117 |
+
--infer_datasets $infer_datasets \
|
118 |
+
--vocoder_dir $infer_expt_dir \
|
119 |
+
--output_dir $infer_output_dir \
|
120 |
+
--log_level debug
|
121 |
+
fi
|
122 |
+
|
123 |
+
if [ $infer_mode = "infer_from_feature" ]; then
|
124 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
125 |
+
--config $exp_config \
|
126 |
+
--infer_mode $infer_mode \
|
127 |
+
--feature_folder $infer_feature_dir \
|
128 |
+
--vocoder_dir $infer_expt_dir \
|
129 |
+
--output_dir $infer_output_dir \
|
130 |
+
--log_level debug
|
131 |
+
fi
|
132 |
+
|
133 |
+
if [ $infer_mode = "infer_from_audio" ]; then
|
134 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
135 |
+
--config $exp_config \
|
136 |
+
--infer_mode $infer_mode \
|
137 |
+
--audio_folder $infer_audio_dir \
|
138 |
+
--vocoder_dir $infer_expt_dir \
|
139 |
+
--output_dir $infer_output_dir \
|
140 |
+
--log_level debug
|
141 |
+
fi
|
142 |
+
|
143 |
+
fi
|
egs/vocoder/gan/nsfhifigan/exp_config.json
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "egs/vocoder/gan/exp_config_base.json",
|
3 |
+
"preprocess": {
|
4 |
+
// acoustic features
|
5 |
+
"extract_mel": true,
|
6 |
+
"extract_audio": true,
|
7 |
+
"extract_pitch": true,
|
8 |
+
|
9 |
+
// Features used for model training
|
10 |
+
"use_mel": true,
|
11 |
+
"use_audio": true,
|
12 |
+
"use_frame_pitch": true
|
13 |
+
},
|
14 |
+
"model": {
|
15 |
+
"generator": "nsfhifigan",
|
16 |
+
"nsfhifigan": {
|
17 |
+
"resblock": "1",
|
18 |
+
"harmonic_num": 8,
|
19 |
+
"upsample_rates": [
|
20 |
+
8,
|
21 |
+
4,
|
22 |
+
2,
|
23 |
+
2,
|
24 |
+
2
|
25 |
+
],
|
26 |
+
"upsample_kernel_sizes": [
|
27 |
+
16,
|
28 |
+
8,
|
29 |
+
4,
|
30 |
+
4,
|
31 |
+
4
|
32 |
+
],
|
33 |
+
"upsample_initial_channel": 768,
|
34 |
+
"resblock_kernel_sizes": [
|
35 |
+
3,
|
36 |
+
7,
|
37 |
+
11
|
38 |
+
],
|
39 |
+
"resblock_dilation_sizes": [
|
40 |
+
[
|
41 |
+
1,
|
42 |
+
3,
|
43 |
+
5
|
44 |
+
],
|
45 |
+
[
|
46 |
+
1,
|
47 |
+
3,
|
48 |
+
5
|
49 |
+
],
|
50 |
+
[
|
51 |
+
1,
|
52 |
+
3,
|
53 |
+
5
|
54 |
+
]
|
55 |
+
]
|
56 |
+
},
|
57 |
+
"mpd": {
|
58 |
+
"mpd_reshapes": [
|
59 |
+
2,
|
60 |
+
3,
|
61 |
+
5,
|
62 |
+
7,
|
63 |
+
11,
|
64 |
+
17,
|
65 |
+
23,
|
66 |
+
37
|
67 |
+
],
|
68 |
+
"use_spectral_norm": false,
|
69 |
+
"discriminator_channel_multi": 1
|
70 |
+
}
|
71 |
+
},
|
72 |
+
"train": {
|
73 |
+
"criterions": [
|
74 |
+
"feature",
|
75 |
+
"discriminator",
|
76 |
+
"generator",
|
77 |
+
"mel",
|
78 |
+
]
|
79 |
+
},
|
80 |
+
"inference": {
|
81 |
+
"batch_size": 1,
|
82 |
+
}
|
83 |
+
}
|
egs/vocoder/gan/nsfhifigan/run.sh
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
######## Build Experiment Environment ###########
|
7 |
+
exp_dir=$(cd `dirname $0`; pwd)
|
8 |
+
work_dir=$(dirname $(dirname $(dirname $(dirname $exp_dir))))
|
9 |
+
|
10 |
+
export WORK_DIR=$work_dir
|
11 |
+
export PYTHONPATH=$work_dir
|
12 |
+
export PYTHONIOENCODING=UTF-8
|
13 |
+
|
14 |
+
######## Parse the Given Parameters from the Commond ###########
|
15 |
+
options=$(getopt -o c:n:s --long gpu:,config:,name:,stage:,resume:,checkpoint:,resume_type:,infer_mode:,infer_datasets:,infer_feature_dir:,infer_audio_dir:,infer_expt_dir:,infer_output_dir: -- "$@")
|
16 |
+
eval set -- "$options"
|
17 |
+
|
18 |
+
while true; do
|
19 |
+
case $1 in
|
20 |
+
# Experimental Configuration File
|
21 |
+
-c | --config) shift; exp_config=$1 ; shift ;;
|
22 |
+
# Experimental Name
|
23 |
+
-n | --name) shift; exp_name=$1 ; shift ;;
|
24 |
+
# Running Stage
|
25 |
+
-s | --stage) shift; running_stage=$1 ; shift ;;
|
26 |
+
# Visible GPU machines. The default value is "0".
|
27 |
+
--gpu) shift; gpu=$1 ; shift ;;
|
28 |
+
|
29 |
+
# [Only for Training] Resume configuration
|
30 |
+
--resume) shift; resume=$1 ; shift ;;
|
31 |
+
# [Only for Training] The specific checkpoint path that you want to resume from.
|
32 |
+
--checkpoint) shift; cehckpoint=$1 ; shift ;;
|
33 |
+
# [Only for Training] `resume` for loading all the things (including model weights, optimizer, scheduler, and random states). `finetune` for loading only the model weights.
|
34 |
+
--resume_type) shift; resume_type=$1 ; shift ;;
|
35 |
+
|
36 |
+
# [Only for Inference] The inference mode
|
37 |
+
--infer_mode) shift; infer_mode=$1 ; shift ;;
|
38 |
+
# [Only for Inference] The inferenced datasets
|
39 |
+
--infer_datasets) shift; infer_datasets=$1 ; shift ;;
|
40 |
+
# [Only for Inference] The feature dir for inference
|
41 |
+
--infer_feature_dir) shift; infer_feature_dir=$1 ; shift ;;
|
42 |
+
# [Only for Inference] The audio dir for inference
|
43 |
+
--infer_audio_dir) shift; infer_audio_dir=$1 ; shift ;;
|
44 |
+
# [Only for Inference] The experiment dir. The value is like "[Your path to save logs and checkpoints]/[YourExptName]"
|
45 |
+
--infer_expt_dir) shift; infer_expt_dir=$1 ; shift ;;
|
46 |
+
# [Only for Inference] The output dir to save inferred audios. Its default value is "$expt_dir/result"
|
47 |
+
--infer_output_dir) shift; infer_output_dir=$1 ; shift ;;
|
48 |
+
|
49 |
+
--) shift ; break ;;
|
50 |
+
*) echo "Invalid option: $1" exit 1 ;;
|
51 |
+
esac
|
52 |
+
done
|
53 |
+
|
54 |
+
|
55 |
+
### Value check ###
|
56 |
+
if [ -z "$running_stage" ]; then
|
57 |
+
echo "[Error] Please specify the running stage"
|
58 |
+
exit 1
|
59 |
+
fi
|
60 |
+
|
61 |
+
if [ -z "$exp_config" ]; then
|
62 |
+
exp_config="${exp_dir}"/exp_config.json
|
63 |
+
fi
|
64 |
+
echo "Exprimental Configuration File: $exp_config"
|
65 |
+
|
66 |
+
if [ -z "$gpu" ]; then
|
67 |
+
gpu="0"
|
68 |
+
fi
|
69 |
+
|
70 |
+
######## Features Extraction ###########
|
71 |
+
if [ $running_stage -eq 1 ]; then
|
72 |
+
CUDA_VISIBLE_DEVICES=$gpu python "${work_dir}"/bins/vocoder/preprocess.py \
|
73 |
+
--config $exp_config \
|
74 |
+
--num_workers 8
|
75 |
+
fi
|
76 |
+
|
77 |
+
######## Training ###########
|
78 |
+
if [ $running_stage -eq 2 ]; then
|
79 |
+
if [ -z "$exp_name" ]; then
|
80 |
+
echo "[Error] Please specify the experiments name"
|
81 |
+
exit 1
|
82 |
+
fi
|
83 |
+
echo "Exprimental Name: $exp_name"
|
84 |
+
|
85 |
+
if [ "$resume" = true ]; then
|
86 |
+
echo "Automatically resume from the experimental dir..."
|
87 |
+
CUDA_VISIBLE_DEVICES="$gpu" accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
88 |
+
--config "$exp_config" \
|
89 |
+
--exp_name "$exp_name" \
|
90 |
+
--log_level info \
|
91 |
+
--resume
|
92 |
+
else
|
93 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
94 |
+
--config "$exp_config" \
|
95 |
+
--exp_name "$exp_name" \
|
96 |
+
--log_level info \
|
97 |
+
--checkpoint "$checkpoint" \
|
98 |
+
--resume_type "$resume_type"
|
99 |
+
fi
|
100 |
+
fi
|
101 |
+
|
102 |
+
######## Inference/Conversion ###########
|
103 |
+
if [ $running_stage -eq 3 ]; then
|
104 |
+
if [ -z "$infer_expt_dir" ]; then
|
105 |
+
echo "[Error] Please specify the experimental directionary. The value is like [Your path to save logs and checkpoints]/[YourExptName]"
|
106 |
+
exit 1
|
107 |
+
fi
|
108 |
+
|
109 |
+
if [ -z "$infer_output_dir" ]; then
|
110 |
+
infer_output_dir="$infer_expt_dir/result"
|
111 |
+
fi
|
112 |
+
|
113 |
+
if [ $infer_mode = "infer_from_dataset" ]; then
|
114 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
115 |
+
--config $exp_config \
|
116 |
+
--infer_mode $infer_mode \
|
117 |
+
--infer_datasets $infer_datasets \
|
118 |
+
--vocoder_dir $infer_expt_dir \
|
119 |
+
--output_dir $infer_output_dir \
|
120 |
+
--log_level debug
|
121 |
+
fi
|
122 |
+
|
123 |
+
if [ $infer_mode = "infer_from_feature" ]; then
|
124 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
125 |
+
--config $exp_config \
|
126 |
+
--infer_mode $infer_mode \
|
127 |
+
--feature_folder $infer_feature_dir \
|
128 |
+
--vocoder_dir $infer_expt_dir \
|
129 |
+
--output_dir $infer_output_dir \
|
130 |
+
--log_level debug
|
131 |
+
fi
|
132 |
+
|
133 |
+
if [ $infer_mode = "infer_from_audio" ]; then
|
134 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
135 |
+
--config $exp_config \
|
136 |
+
--infer_mode $infer_mode \
|
137 |
+
--audio_folder $infer_audio_dir \
|
138 |
+
--vocoder_dir $infer_expt_dir \
|
139 |
+
--output_dir $infer_output_dir \
|
140 |
+
--log_level debug
|
141 |
+
fi
|
142 |
+
|
143 |
+
fi
|
egs/vocoder/gan/tfr_enhanced_hifigan/README.md
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fedility Vocoder
|
2 |
+
|
3 |
+
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2311.14957)
|
4 |
+
[![demo](https://img.shields.io/badge/Vocoder-Demo-red)](https://vocodexelysium.github.io/MS-SB-CQTD/)
|
5 |
+
|
6 |
+
<br>
|
7 |
+
<div align="center">
|
8 |
+
<img src="../../../../imgs/vocoder/gan/MSSBCQTD.png" width="80%">
|
9 |
+
</div>
|
10 |
+
<br>
|
11 |
+
|
12 |
+
This is the official implementation of the paper "[Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder](https://arxiv.org/abs/2311.14957)". In this recipe, we will illustrate how to train a high quality HiFi-GAN on LibriTTS, VCTK and LJSpeech via utilizing multiple Time-Frequency-Representation-based Discriminators.
|
13 |
+
|
14 |
+
There are four stages in total:
|
15 |
+
|
16 |
+
1. Data preparation
|
17 |
+
2. Feature extraction
|
18 |
+
3. Training
|
19 |
+
4. Inference
|
20 |
+
|
21 |
+
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path:
|
22 |
+
> ```bash
|
23 |
+
> cd Amphion
|
24 |
+
> ```
|
25 |
+
|
26 |
+
## 1. Data Preparation
|
27 |
+
|
28 |
+
### Dataset Download
|
29 |
+
|
30 |
+
By default, we utilize the three datasets for training: LibriTTS, VCTK and LJSpeech. How to download them is detailed in [here](../../../datasets/README.md).
|
31 |
+
|
32 |
+
### Configuration
|
33 |
+
|
34 |
+
Specify the dataset path in `exp_config.json`. Note that you can change the `dataset` list to use your preferred datasets.
|
35 |
+
|
36 |
+
```json
|
37 |
+
"dataset": [
|
38 |
+
"ljspeech",
|
39 |
+
"vctk",
|
40 |
+
"libritts",
|
41 |
+
],
|
42 |
+
"dataset_path": {
|
43 |
+
// TODO: Fill in your dataset path
|
44 |
+
"ljspeech": "[LJSpeech dataset path]",
|
45 |
+
"vctk": "[VCTK dataset path]",
|
46 |
+
"libritts": "[LibriTTS dataset path]",
|
47 |
+
},
|
48 |
+
```
|
49 |
+
|
50 |
+
## 2. Features Extraction
|
51 |
+
|
52 |
+
For HiFiGAN, only the Mel-Spectrogram and the Output Audio are needed for training.
|
53 |
+
|
54 |
+
### Configuration
|
55 |
+
|
56 |
+
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config.json`:
|
57 |
+
|
58 |
+
```json
|
59 |
+
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder"
|
60 |
+
"log_dir": "ckpts/vocoder",
|
61 |
+
"preprocess": {
|
62 |
+
// TODO: Fill in the output data path. The default value is "Amphion/data"
|
63 |
+
"processed_dir": "data",
|
64 |
+
...
|
65 |
+
},
|
66 |
+
```
|
67 |
+
|
68 |
+
### Run
|
69 |
+
|
70 |
+
Run the `run.sh` as the preproces stage (set `--stage 1`).
|
71 |
+
|
72 |
+
```bash
|
73 |
+
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 1
|
74 |
+
```
|
75 |
+
|
76 |
+
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`.
|
77 |
+
|
78 |
+
## 3. Training
|
79 |
+
|
80 |
+
### Configuration
|
81 |
+
|
82 |
+
We provide the default hyparameters in the `exp_config.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.
|
83 |
+
|
84 |
+
```json
|
85 |
+
"train": {
|
86 |
+
"batch_size": 32,
|
87 |
+
...
|
88 |
+
}
|
89 |
+
```
|
90 |
+
|
91 |
+
### Run
|
92 |
+
|
93 |
+
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/vocoder/[YourExptName]`.
|
94 |
+
|
95 |
+
```bash
|
96 |
+
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 2 --name [YourExptName]
|
97 |
+
```
|
98 |
+
|
99 |
+
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`.
|
100 |
+
|
101 |
+
## 4. Inference
|
102 |
+
|
103 |
+
### Pretrained Vocoder Download
|
104 |
+
|
105 |
+
We trained a HiFiGAN checkpoint with around 685 hours Speech data. The final pretrained checkpoint is released [here](../../../../pretrained/hifigan/README.md).
|
106 |
+
|
107 |
+
### Run
|
108 |
+
|
109 |
+
Run the `run.sh` as the training stage (set `--stage 3`), we provide three different inference modes, including `infer_from_dataset`, `infer_from_feature`, `and infer_from audio`.
|
110 |
+
|
111 |
+
```bash
|
112 |
+
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \
|
113 |
+
--infer_mode [Your chosen inference mode] \
|
114 |
+
--infer_datasets [Datasets you want to inference, needed when infer_from_dataset] \
|
115 |
+
--infer_feature_dir [Your path to your predicted acoustic features, needed when infer_from_feature] \
|
116 |
+
--infer_audio_dir [Your path to your audio files, needed when infer_form_audio] \
|
117 |
+
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
|
118 |
+
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
|
119 |
+
```
|
120 |
+
|
121 |
+
#### a. Inference from Dataset
|
122 |
+
|
123 |
+
Run the `run.sh` with specified datasets, here is an example.
|
124 |
+
|
125 |
+
```bash
|
126 |
+
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \
|
127 |
+
--infer_mode infer_from_dataset \
|
128 |
+
--infer_datasets "libritts vctk ljspeech" \
|
129 |
+
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
|
130 |
+
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
|
131 |
+
```
|
132 |
+
|
133 |
+
#### b. Inference from Features
|
134 |
+
|
135 |
+
If you want to inference from your generated acoustic features, you should first prepare your acoustic features into the following structure:
|
136 |
+
|
137 |
+
```plaintext
|
138 |
+
┣ {infer_feature_dir}
|
139 |
+
┃ ┣ mels
|
140 |
+
┃ ┃ ┣ sample1.npy
|
141 |
+
┃ ┃ ┣ sample2.npy
|
142 |
+
```
|
143 |
+
|
144 |
+
Then run the `run.sh` with specificed folder direction, here is an example.
|
145 |
+
|
146 |
+
```bash
|
147 |
+
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \
|
148 |
+
--infer_mode infer_from_feature \
|
149 |
+
--infer_feature_dir [Your path to your predicted acoustic features] \
|
150 |
+
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
|
151 |
+
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
|
152 |
+
```
|
153 |
+
|
154 |
+
#### c. Inference from Audios
|
155 |
+
|
156 |
+
If you want to inference from audios for quick analysis synthesis, you should first prepare your audios into the following structure:
|
157 |
+
|
158 |
+
```plaintext
|
159 |
+
┣ audios
|
160 |
+
┃ ┣ sample1.wav
|
161 |
+
┃ ┣ sample2.wav
|
162 |
+
```
|
163 |
+
|
164 |
+
Then run the `run.sh` with specificed folder direction, here is an example.
|
165 |
+
|
166 |
+
```bash
|
167 |
+
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \
|
168 |
+
--infer_mode infer_from_audio \
|
169 |
+
--infer_audio_dir [Your path to your audio files] \
|
170 |
+
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
|
171 |
+
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
|
172 |
+
```
|
173 |
+
|
174 |
+
## Citations
|
175 |
+
|
176 |
+
```bibtex
|
177 |
+
@misc{gu2023cqt,
|
178 |
+
title={Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder},
|
179 |
+
author={Yicheng Gu and Xueyao Zhang and Liumeng Xue and Zhizheng Wu},
|
180 |
+
year={2023},
|
181 |
+
eprint={2311.14957},
|
182 |
+
archivePrefix={arXiv},
|
183 |
+
primaryClass={cs.SD}
|
184 |
+
}
|
185 |
+
```
|
egs/vocoder/gan/tfr_enhanced_hifigan/exp_config.json
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_config": "egs/vocoder/gan/exp_config_base.json",
|
3 |
+
"model_type": "GANVocoder",
|
4 |
+
"dataset": [
|
5 |
+
"ljspeech",
|
6 |
+
"vctk",
|
7 |
+
"libritts",
|
8 |
+
],
|
9 |
+
"dataset_path": {
|
10 |
+
// TODO: Fill in your dataset path
|
11 |
+
"ljspeech": "[dataset path]",
|
12 |
+
"vctk": "[dataset path]",
|
13 |
+
"libritts": "[dataset path]",
|
14 |
+
},
|
15 |
+
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder"
|
16 |
+
"log_dir": "ckpts/vocoder",
|
17 |
+
"preprocess": {
|
18 |
+
// TODO: Fill in the output data path. The default value is "Amphion/data"
|
19 |
+
"processed_dir": "data",
|
20 |
+
// acoustic features
|
21 |
+
"extract_mel": true,
|
22 |
+
"extract_audio": true,
|
23 |
+
"extract_pitch": false,
|
24 |
+
"extract_uv": false,
|
25 |
+
"extract_amplitude_phase": false,
|
26 |
+
"pitch_extractor": "parselmouth",
|
27 |
+
// Features used for model training
|
28 |
+
"use_mel": true,
|
29 |
+
"use_frame_pitch": false,
|
30 |
+
"use_uv": false,
|
31 |
+
"use_audio": true,
|
32 |
+
"n_mel": 100,
|
33 |
+
"sample_rate": 24000
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"generator": "hifigan",
|
37 |
+
"discriminators": [
|
38 |
+
"msd",
|
39 |
+
"mpd",
|
40 |
+
"mssbcqtd",
|
41 |
+
"msstftd",
|
42 |
+
],
|
43 |
+
"hifigan": {
|
44 |
+
"resblock": "1",
|
45 |
+
"upsample_rates": [
|
46 |
+
8,
|
47 |
+
4,
|
48 |
+
2,
|
49 |
+
2,
|
50 |
+
2
|
51 |
+
],
|
52 |
+
"upsample_kernel_sizes": [
|
53 |
+
16,
|
54 |
+
8,
|
55 |
+
4,
|
56 |
+
4,
|
57 |
+
4
|
58 |
+
],
|
59 |
+
"upsample_initial_channel": 768,
|
60 |
+
"resblock_kernel_sizes": [
|
61 |
+
3,
|
62 |
+
5,
|
63 |
+
7
|
64 |
+
],
|
65 |
+
"resblock_dilation_sizes": [
|
66 |
+
[
|
67 |
+
1,
|
68 |
+
3,
|
69 |
+
5
|
70 |
+
],
|
71 |
+
[
|
72 |
+
1,
|
73 |
+
3,
|
74 |
+
5
|
75 |
+
],
|
76 |
+
[
|
77 |
+
1,
|
78 |
+
3,
|
79 |
+
5
|
80 |
+
]
|
81 |
+
]
|
82 |
+
},
|
83 |
+
"mpd": {
|
84 |
+
"mpd_reshapes": [
|
85 |
+
2,
|
86 |
+
3,
|
87 |
+
5,
|
88 |
+
7,
|
89 |
+
11,
|
90 |
+
17,
|
91 |
+
23,
|
92 |
+
37
|
93 |
+
],
|
94 |
+
"use_spectral_norm": false,
|
95 |
+
"discriminator_channel_multi": 1
|
96 |
+
}
|
97 |
+
},
|
98 |
+
"train": {
|
99 |
+
"batch_size": 16,
|
100 |
+
"adamw": {
|
101 |
+
"lr": 2.0e-4,
|
102 |
+
"adam_b1": 0.8,
|
103 |
+
"adam_b2": 0.99
|
104 |
+
},
|
105 |
+
"exponential_lr": {
|
106 |
+
"lr_decay": 0.999
|
107 |
+
},
|
108 |
+
"criterions": [
|
109 |
+
"feature",
|
110 |
+
"discriminator",
|
111 |
+
"generator",
|
112 |
+
"mel",
|
113 |
+
]
|
114 |
+
},
|
115 |
+
"inference": {
|
116 |
+
"batch_size": 1,
|
117 |
+
}
|
118 |
+
}
|
egs/vocoder/gan/tfr_enhanced_hifigan/run.sh
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
######## Build Experiment Environment ###########
|
7 |
+
exp_dir=$(cd `dirname $0`; pwd)
|
8 |
+
work_dir=$(dirname $(dirname $(dirname $(dirname $exp_dir))))
|
9 |
+
|
10 |
+
export WORK_DIR=$work_dir
|
11 |
+
export PYTHONPATH=$work_dir
|
12 |
+
export PYTHONIOENCODING=UTF-8
|
13 |
+
|
14 |
+
######## Parse the Given Parameters from the Commond ###########
|
15 |
+
options=$(getopt -o c:n:s --long gpu:,config:,name:,stage:,resume:,checkpoint:,resume_type:,infer_mode:,infer_datasets:,infer_feature_dir:,infer_audio_dir:,infer_expt_dir:,infer_output_dir: -- "$@")
|
16 |
+
eval set -- "$options"
|
17 |
+
|
18 |
+
while true; do
|
19 |
+
case $1 in
|
20 |
+
# Experimental Configuration File
|
21 |
+
-c | --config) shift; exp_config=$1 ; shift ;;
|
22 |
+
# Experimental Name
|
23 |
+
-n | --name) shift; exp_name=$1 ; shift ;;
|
24 |
+
# Running Stage
|
25 |
+
-s | --stage) shift; running_stage=$1 ; shift ;;
|
26 |
+
# Visible GPU machines. The default value is "0".
|
27 |
+
--gpu) shift; gpu=$1 ; shift ;;
|
28 |
+
|
29 |
+
# [Only for Training] Resume configuration
|
30 |
+
--resume) shift; resume=$1 ; shift ;;
|
31 |
+
# [Only for Training] The specific checkpoint path that you want to resume from.
|
32 |
+
--checkpoint) shift; cehckpoint=$1 ; shift ;;
|
33 |
+
# [Only for Training] `resume` for loading all the things (including model weights, optimizer, scheduler, and random states). `finetune` for loading only the model weights.
|
34 |
+
--resume_type) shift; resume_type=$1 ; shift ;;
|
35 |
+
|
36 |
+
# [Only for Inference] The inference mode
|
37 |
+
--infer_mode) shift; infer_mode=$1 ; shift ;;
|
38 |
+
# [Only for Inference] The inferenced datasets
|
39 |
+
--infer_datasets) shift; infer_datasets=$1 ; shift ;;
|
40 |
+
# [Only for Inference] The feature dir for inference
|
41 |
+
--infer_feature_dir) shift; infer_feature_dir=$1 ; shift ;;
|
42 |
+
# [Only for Inference] The audio dir for inference
|
43 |
+
--infer_audio_dir) shift; infer_audio_dir=$1 ; shift ;;
|
44 |
+
# [Only for Inference] The experiment dir. The value is like "[Your path to save logs and checkpoints]/[YourExptName]"
|
45 |
+
--infer_expt_dir) shift; infer_expt_dir=$1 ; shift ;;
|
46 |
+
# [Only for Inference] The output dir to save inferred audios. Its default value is "$expt_dir/result"
|
47 |
+
--infer_output_dir) shift; infer_output_dir=$1 ; shift ;;
|
48 |
+
|
49 |
+
--) shift ; break ;;
|
50 |
+
*) echo "Invalid option: $1" exit 1 ;;
|
51 |
+
esac
|
52 |
+
done
|
53 |
+
|
54 |
+
|
55 |
+
### Value check ###
|
56 |
+
if [ -z "$running_stage" ]; then
|
57 |
+
echo "[Error] Please specify the running stage"
|
58 |
+
exit 1
|
59 |
+
fi
|
60 |
+
|
61 |
+
if [ -z "$exp_config" ]; then
|
62 |
+
exp_config="${exp_dir}"/exp_config.json
|
63 |
+
fi
|
64 |
+
echo "Exprimental Configuration File: $exp_config"
|
65 |
+
|
66 |
+
if [ -z "$gpu" ]; then
|
67 |
+
gpu="0"
|
68 |
+
fi
|
69 |
+
|
70 |
+
######## Features Extraction ###########
|
71 |
+
if [ $running_stage -eq 1 ]; then
|
72 |
+
CUDA_VISIBLE_DEVICES=$gpu python "${work_dir}"/bins/vocoder/preprocess.py \
|
73 |
+
--config $exp_config \
|
74 |
+
--num_workers 8
|
75 |
+
fi
|
76 |
+
|
77 |
+
######## Training ###########
|
78 |
+
if [ $running_stage -eq 2 ]; then
|
79 |
+
if [ -z "$exp_name" ]; then
|
80 |
+
echo "[Error] Please specify the experiments name"
|
81 |
+
exit 1
|
82 |
+
fi
|
83 |
+
echo "Exprimental Name: $exp_name"
|
84 |
+
|
85 |
+
if [ "$resume" = true ]; then
|
86 |
+
echo "Automatically resume from the experimental dir..."
|
87 |
+
CUDA_VISIBLE_DEVICES="$gpu" accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
88 |
+
--config "$exp_config" \
|
89 |
+
--exp_name "$exp_name" \
|
90 |
+
--log_level info \
|
91 |
+
--resume
|
92 |
+
else
|
93 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "${work_dir}"/bins/vocoder/train.py \
|
94 |
+
--config "$exp_config" \
|
95 |
+
--exp_name "$exp_name" \
|
96 |
+
--log_level info \
|
97 |
+
--checkpoint "$checkpoint" \
|
98 |
+
--resume_type "$resume_type"
|
99 |
+
fi
|
100 |
+
fi
|
101 |
+
|
102 |
+
######## Inference/Conversion ###########
|
103 |
+
if [ $running_stage -eq 3 ]; then
|
104 |
+
if [ -z "$infer_expt_dir" ]; then
|
105 |
+
echo "[Error] Please specify the experimental directionary. The value is like [Your path to save logs and checkpoints]/[YourExptName]"
|
106 |
+
exit 1
|
107 |
+
fi
|
108 |
+
|
109 |
+
if [ -z "$infer_output_dir" ]; then
|
110 |
+
infer_output_dir="$infer_expt_dir/result"
|
111 |
+
fi
|
112 |
+
|
113 |
+
echo $infer_datasets
|
114 |
+
|
115 |
+
if [ $infer_mode = "infer_from_dataset" ]; then
|
116 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
117 |
+
--config $exp_config \
|
118 |
+
--infer_mode $infer_mode \
|
119 |
+
--infer_datasets $infer_datasets \
|
120 |
+
--vocoder_dir $infer_expt_dir \
|
121 |
+
--output_dir $infer_output_dir \
|
122 |
+
--log_level debug
|
123 |
+
fi
|
124 |
+
|
125 |
+
if [ $infer_mode = "infer_from_feature" ]; then
|
126 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
127 |
+
--config $exp_config \
|
128 |
+
--infer_mode $infer_mode \
|
129 |
+
--feature_folder $infer_feature_dir \
|
130 |
+
--vocoder_dir $infer_expt_dir \
|
131 |
+
--output_dir $infer_output_dir \
|
132 |
+
--log_level debug
|
133 |
+
fi
|
134 |
+
|
135 |
+
if [ $infer_mode = "infer_from_audio" ]; then
|
136 |
+
CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
|
137 |
+
--config $exp_config \
|
138 |
+
--infer_mode $infer_mode \
|
139 |
+
--audio_folder $infer_audio_dir \
|
140 |
+
--vocoder_dir $infer_expt_dir \
|
141 |
+
--output_dir $infer_output_dir \
|
142 |
+
--log_level debug
|
143 |
+
fi
|
144 |
+
|
145 |
+
fi
|
inference.py
CHANGED
@@ -208,9 +208,9 @@ def build_parser():
|
|
208 |
return parser
|
209 |
|
210 |
|
211 |
-
def main():
|
212 |
### Parse arguments and config
|
213 |
-
args = build_parser().parse_args()
|
214 |
cfg = load_config(args.config)
|
215 |
|
216 |
# CUDA settings
|
@@ -256,3 +256,7 @@ def main():
|
|
256 |
else:
|
257 |
### Infer from dataset
|
258 |
infer(args, cfg, infer_type="from_dataset")
|
|
|
|
|
|
|
|
|
|
208 |
return parser
|
209 |
|
210 |
|
211 |
+
def main(args_list):
|
212 |
### Parse arguments and config
|
213 |
+
args = build_parser().parse_args(args_list)
|
214 |
cfg = load_config(args.config)
|
215 |
|
216 |
# CUDA settings
|
|
|
256 |
else:
|
257 |
### Infer from dataset
|
258 |
infer(args, cfg, infer_type="from_dataset")
|
259 |
+
|
260 |
+
|
261 |
+
if __name__ == "__main__":
|
262 |
+
main()
|
modules/__init__.py
ADDED
File without changes
|
modules/activation_functions/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
from .gated_activation_unit import GaU
|
7 |
+
from .snake import Snake, SnakeBeta
|
modules/activation_functions/gated_activation_unit.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from modules.general.utils import Conv1d
|
10 |
+
|
11 |
+
|
12 |
+
class GaU(nn.Module):
|
13 |
+
r"""Gated Activation Unit (GaU) proposed in `Gated Activation Units for Neural
|
14 |
+
Networks <https://arxiv.org/pdf/1606.05328.pdf>`_.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
channels: number of input channels.
|
18 |
+
kernel_size: kernel size of the convolution.
|
19 |
+
dilation: dilation rate of the convolution.
|
20 |
+
d_context: dimension of context tensor, None if don't use context.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
channels: int,
|
26 |
+
kernel_size: int = 3,
|
27 |
+
dilation: int = 1,
|
28 |
+
d_context: int = None,
|
29 |
+
):
|
30 |
+
super().__init__()
|
31 |
+
|
32 |
+
self.context = d_context
|
33 |
+
|
34 |
+
self.conv = Conv1d(
|
35 |
+
channels,
|
36 |
+
channels * 2,
|
37 |
+
kernel_size,
|
38 |
+
dilation=dilation,
|
39 |
+
padding=dilation * (kernel_size - 1) // 2,
|
40 |
+
)
|
41 |
+
|
42 |
+
if self.context:
|
43 |
+
self.context_proj = Conv1d(d_context, channels * 2, 1)
|
44 |
+
|
45 |
+
def forward(self, x: torch.Tensor, context: torch.Tensor = None):
|
46 |
+
r"""Calculate forward propagation.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
x: input tensor with shape [B, C, T].
|
50 |
+
context: context tensor with shape [B, ``d_context``, T], default to None.
|
51 |
+
"""
|
52 |
+
|
53 |
+
h = self.conv(x)
|
54 |
+
|
55 |
+
if self.context:
|
56 |
+
h = h + self.context_proj(context)
|
57 |
+
|
58 |
+
h1, h2 = h.chunk(2, 1)
|
59 |
+
h = torch.tanh(h1) * torch.sigmoid(h2)
|
60 |
+
|
61 |
+
return h
|
modules/activation_functions/snake.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn, pow, sin
|
8 |
+
from torch.nn import Parameter
|
9 |
+
|
10 |
+
|
11 |
+
class Snake(nn.Module):
|
12 |
+
r"""Implementation of a sine-based periodic activation function.
|
13 |
+
Alpha is initialized to 1 by default, higher values means higher frequency.
|
14 |
+
It will be trained along with the rest of your model.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
in_features: shape of the input
|
18 |
+
alpha: trainable parameter
|
19 |
+
|
20 |
+
Shape:
|
21 |
+
- Input: (B, C, T)
|
22 |
+
- Output: (B, C, T), same shape as the input
|
23 |
+
|
24 |
+
References:
|
25 |
+
This activation function is from this paper by Liu Ziyin, Tilman Hartwig,
|
26 |
+
Masahito Ueda: https://arxiv.org/abs/2006.08195
|
27 |
+
|
28 |
+
Examples:
|
29 |
+
>>> a1 = Snake(256)
|
30 |
+
>>> x = torch.randn(256)
|
31 |
+
>>> x = a1(x)
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
|
36 |
+
):
|
37 |
+
super(Snake, self).__init__()
|
38 |
+
self.in_features = in_features
|
39 |
+
|
40 |
+
# initialize alpha
|
41 |
+
self.alpha_logscale = alpha_logscale
|
42 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
43 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
44 |
+
else: # linear scale alphas initialized to ones
|
45 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
46 |
+
|
47 |
+
self.alpha.requires_grad = alpha_trainable
|
48 |
+
|
49 |
+
self.no_div_by_zero = 0.000000001
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
r"""Forward pass of the function. Applies the function to the input elementwise.
|
53 |
+
Snake ∶= x + 1/a * sin^2 (ax)
|
54 |
+
"""
|
55 |
+
|
56 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
57 |
+
if self.alpha_logscale:
|
58 |
+
alpha = torch.exp(alpha)
|
59 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
60 |
+
|
61 |
+
return x
|
62 |
+
|
63 |
+
|
64 |
+
class SnakeBeta(nn.Module):
|
65 |
+
r"""A modified Snake function which uses separate parameters for the magnitude
|
66 |
+
of the periodic components. Alpha is initialized to 1 by default,
|
67 |
+
higher values means higher frequency. Beta is initialized to 1 by default,
|
68 |
+
higher values means higher magnitude. Both will be trained along with the
|
69 |
+
rest of your model.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
in_features: shape of the input
|
73 |
+
alpha: trainable parameter that controls frequency
|
74 |
+
beta: trainable parameter that controls magnitude
|
75 |
+
|
76 |
+
Shape:
|
77 |
+
- Input: (B, C, T)
|
78 |
+
- Output: (B, C, T), same shape as the input
|
79 |
+
|
80 |
+
References:
|
81 |
+
This activation function is a modified version based on this paper by Liu Ziyin,
|
82 |
+
Tilman Hartwig, Masahito Ueda: https://arxiv.org/abs/2006.08195
|
83 |
+
|
84 |
+
Examples:
|
85 |
+
>>> a1 = SnakeBeta(256)
|
86 |
+
>>> x = torch.randn(256)
|
87 |
+
>>> x = a1(x)
|
88 |
+
"""
|
89 |
+
|
90 |
+
def __init__(
|
91 |
+
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
|
92 |
+
):
|
93 |
+
super(SnakeBeta, self).__init__()
|
94 |
+
self.in_features = in_features
|
95 |
+
|
96 |
+
# initialize alpha
|
97 |
+
self.alpha_logscale = alpha_logscale
|
98 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
99 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
100 |
+
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
101 |
+
else: # linear scale alphas initialized to ones
|
102 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
103 |
+
self.beta = Parameter(torch.ones(in_features) * alpha)
|
104 |
+
|
105 |
+
self.alpha.requires_grad = alpha_trainable
|
106 |
+
self.beta.requires_grad = alpha_trainable
|
107 |
+
|
108 |
+
self.no_div_by_zero = 0.000000001
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
r"""Forward pass of the function. Applies the function to the input elementwise.
|
112 |
+
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
113 |
+
"""
|
114 |
+
|
115 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
116 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
117 |
+
if self.alpha_logscale:
|
118 |
+
alpha = torch.exp(alpha)
|
119 |
+
beta = torch.exp(beta)
|
120 |
+
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
121 |
+
|
122 |
+
return x
|
modules/anti_aliasing/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
from .act import *
|
7 |
+
from .filter import *
|
8 |
+
from .resample import *
|
modules/anti_aliasing/act.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .resample import *
|
9 |
+
|
10 |
+
# This code is adopted from BigVGAN under the MIT License
|
11 |
+
# https://github.com/NVIDIA/BigVGAN
|
12 |
+
|
13 |
+
class Activation1d(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
activation,
|
17 |
+
up_ratio: int = 2,
|
18 |
+
down_ratio: int = 2,
|
19 |
+
up_kernel_size: int = 12,
|
20 |
+
down_kernel_size: int = 12,
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
self.up_ratio = up_ratio
|
24 |
+
self.down_ratio = down_ratio
|
25 |
+
self.act = activation
|
26 |
+
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
27 |
+
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
28 |
+
|
29 |
+
# x: [B,C,T]
|
30 |
+
def forward(self, x):
|
31 |
+
x = self.upsample(x)
|
32 |
+
x = self.act(x)
|
33 |
+
x = self.downsample(x)
|
34 |
+
|
35 |
+
return x
|
modules/anti_aliasing/filter.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import math
|
10 |
+
|
11 |
+
if "sinc" in dir(torch):
|
12 |
+
sinc = torch.sinc
|
13 |
+
else:
|
14 |
+
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
15 |
+
# https://adefossez.github.io/julius/julius/core.html
|
16 |
+
def sinc(x: torch.Tensor):
|
17 |
+
"""
|
18 |
+
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
19 |
+
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
20 |
+
"""
|
21 |
+
return torch.where(
|
22 |
+
x == 0,
|
23 |
+
torch.tensor(1.0, device=x.device, dtype=x.dtype),
|
24 |
+
torch.sin(math.pi * x) / math.pi / x,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
29 |
+
# https://adefossez.github.io/julius/julius/lowpass.html
|
30 |
+
def kaiser_sinc_filter1d(
|
31 |
+
cutoff, half_width, kernel_size
|
32 |
+
): # return filter [1,1,kernel_size]
|
33 |
+
even = kernel_size % 2 == 0
|
34 |
+
half_size = kernel_size // 2
|
35 |
+
|
36 |
+
# For kaiser window
|
37 |
+
delta_f = 4 * half_width
|
38 |
+
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
39 |
+
if A > 50.0:
|
40 |
+
beta = 0.1102 * (A - 8.7)
|
41 |
+
elif A >= 21.0:
|
42 |
+
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
|
43 |
+
else:
|
44 |
+
beta = 0.0
|
45 |
+
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
46 |
+
|
47 |
+
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
48 |
+
if even:
|
49 |
+
time = torch.arange(-half_size, half_size) + 0.5
|
50 |
+
else:
|
51 |
+
time = torch.arange(kernel_size) - half_size
|
52 |
+
if cutoff == 0:
|
53 |
+
filter_ = torch.zeros_like(time)
|
54 |
+
else:
|
55 |
+
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
56 |
+
# Normalize filter to have sum = 1, otherwise we will have a small leakage
|
57 |
+
# of the constant component in the input signal.
|
58 |
+
filter_ /= filter_.sum()
|
59 |
+
filter = filter_.view(1, 1, kernel_size)
|
60 |
+
|
61 |
+
return filter
|
62 |
+
|
63 |
+
|
64 |
+
class LowPassFilter1d(nn.Module):
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
cutoff=0.5,
|
68 |
+
half_width=0.6,
|
69 |
+
stride: int = 1,
|
70 |
+
padding: bool = True,
|
71 |
+
padding_mode: str = "replicate",
|
72 |
+
kernel_size: int = 12,
|
73 |
+
):
|
74 |
+
# kernel_size should be even number for stylegan3 setup,
|
75 |
+
# in this implementation, odd number is also possible.
|
76 |
+
super().__init__()
|
77 |
+
if cutoff < -0.0:
|
78 |
+
raise ValueError("Minimum cutoff must be larger than zero.")
|
79 |
+
if cutoff > 0.5:
|
80 |
+
raise ValueError("A cutoff above 0.5 does not make sense.")
|
81 |
+
self.kernel_size = kernel_size
|
82 |
+
self.even = kernel_size % 2 == 0
|
83 |
+
self.pad_left = kernel_size // 2 - int(self.even)
|
84 |
+
self.pad_right = kernel_size // 2
|
85 |
+
self.stride = stride
|
86 |
+
self.padding = padding
|
87 |
+
self.padding_mode = padding_mode
|
88 |
+
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
89 |
+
self.register_buffer("filter", filter)
|
90 |
+
|
91 |
+
# input [B, C, T]
|
92 |
+
def forward(self, x):
|
93 |
+
_, C, _ = x.shape
|
94 |
+
|
95 |
+
if self.padding:
|
96 |
+
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
|
97 |
+
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
98 |
+
|
99 |
+
return out
|
modules/anti_aliasing/resample.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
#################### Anti-aliasing ####################
|
7 |
+
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
from .filter import *
|
12 |
+
|
13 |
+
# This code is adopted from BigVGAN under the MIT License
|
14 |
+
# https://github.com/NVIDIA/BigVGAN
|
15 |
+
|
16 |
+
class UpSample1d(nn.Module):
|
17 |
+
def __init__(self, ratio=2, kernel_size=None):
|
18 |
+
super().__init__()
|
19 |
+
self.ratio = ratio
|
20 |
+
self.kernel_size = (
|
21 |
+
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
22 |
+
)
|
23 |
+
self.stride = ratio
|
24 |
+
self.pad = self.kernel_size // ratio - 1
|
25 |
+
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
26 |
+
self.pad_right = (
|
27 |
+
self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
28 |
+
)
|
29 |
+
filter = kaiser_sinc_filter1d(
|
30 |
+
cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
|
31 |
+
)
|
32 |
+
self.register_buffer("filter", filter)
|
33 |
+
|
34 |
+
# x: [B, C, T]
|
35 |
+
def forward(self, x):
|
36 |
+
_, C, _ = x.shape
|
37 |
+
|
38 |
+
x = F.pad(x, (self.pad, self.pad), mode="replicate")
|
39 |
+
x = self.ratio * F.conv_transpose1d(
|
40 |
+
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
|
41 |
+
)
|
42 |
+
x = x[..., self.pad_left : -self.pad_right]
|
43 |
+
|
44 |
+
return x
|
45 |
+
|
46 |
+
|
47 |
+
class DownSample1d(nn.Module):
|
48 |
+
def __init__(self, ratio=2, kernel_size=None):
|
49 |
+
super().__init__()
|
50 |
+
self.ratio = ratio
|
51 |
+
self.kernel_size = (
|
52 |
+
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
53 |
+
)
|
54 |
+
self.lowpass = LowPassFilter1d(
|
55 |
+
cutoff=0.5 / ratio,
|
56 |
+
half_width=0.6 / ratio,
|
57 |
+
stride=ratio,
|
58 |
+
kernel_size=self.kernel_size,
|
59 |
+
)
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
xx = self.lowpass(x)
|
63 |
+
|
64 |
+
return xx
|
modules/base/base_module.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
|
11 |
+
class LayerNorm(nn.Module):
|
12 |
+
def __init__(self, channels, eps=1e-5):
|
13 |
+
super().__init__()
|
14 |
+
self.channels = channels
|
15 |
+
self.eps = eps
|
16 |
+
|
17 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
18 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
x = x.transpose(1, -1)
|
22 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
23 |
+
return x.transpose(1, -1)
|
24 |
+
|
25 |
+
|
26 |
+
class ConvReluNorm(nn.Module):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
in_channels,
|
30 |
+
hidden_channels,
|
31 |
+
out_channels,
|
32 |
+
kernel_size,
|
33 |
+
n_layers,
|
34 |
+
p_dropout,
|
35 |
+
):
|
36 |
+
super().__init__()
|
37 |
+
self.in_channels = in_channels
|
38 |
+
self.hidden_channels = hidden_channels
|
39 |
+
self.out_channels = out_channels
|
40 |
+
self.kernel_size = kernel_size
|
41 |
+
self.n_layers = n_layers
|
42 |
+
self.p_dropout = p_dropout
|
43 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
44 |
+
|
45 |
+
self.conv_layers = nn.ModuleList()
|
46 |
+
self.norm_layers = nn.ModuleList()
|
47 |
+
self.conv_layers.append(
|
48 |
+
nn.Conv1d(
|
49 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
50 |
+
)
|
51 |
+
)
|
52 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
53 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
54 |
+
for _ in range(n_layers - 1):
|
55 |
+
self.conv_layers.append(
|
56 |
+
nn.Conv1d(
|
57 |
+
hidden_channels,
|
58 |
+
hidden_channels,
|
59 |
+
kernel_size,
|
60 |
+
padding=kernel_size // 2,
|
61 |
+
)
|
62 |
+
)
|
63 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
64 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
65 |
+
self.proj.weight.data.zero_()
|
66 |
+
self.proj.bias.data.zero_()
|
67 |
+
|
68 |
+
def forward(self, x, x_mask):
|
69 |
+
x_org = x
|
70 |
+
for i in range(self.n_layers):
|
71 |
+
x = self.conv_layers[i](x * x_mask)
|
72 |
+
x = self.norm_layers[i](x)
|
73 |
+
x = self.relu_drop(x)
|
74 |
+
x = x_org + self.proj(x)
|
75 |
+
return x * x_mask
|
modules/diffusion/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
from .bidilconv.bidilated_conv import BiDilConv
|
7 |
+
from .unet.unet import UNet
|
modules/diffusion/bidilconv/bidilated_conv.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import math
|
7 |
+
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from modules.general.utils import Conv1d, zero_module
|
11 |
+
from .residual_block import ResidualBlock
|
12 |
+
|
13 |
+
|
14 |
+
class BiDilConv(nn.Module):
|
15 |
+
r"""Dilated CNN architecture with residual connections, default diffusion decoder.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
input_channel: The number of input channels.
|
19 |
+
base_channel: The number of base channels.
|
20 |
+
n_res_block: The number of residual blocks.
|
21 |
+
conv_kernel_size: The kernel size of convolutional layers.
|
22 |
+
dilation_cycle_length: The cycle length of dilation.
|
23 |
+
conditioner_size: The size of conditioner.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
input_channel,
|
29 |
+
base_channel,
|
30 |
+
n_res_block,
|
31 |
+
conv_kernel_size,
|
32 |
+
dilation_cycle_length,
|
33 |
+
conditioner_size,
|
34 |
+
output_channel: int = -1,
|
35 |
+
):
|
36 |
+
super().__init__()
|
37 |
+
|
38 |
+
self.input_channel = input_channel
|
39 |
+
self.base_channel = base_channel
|
40 |
+
self.n_res_block = n_res_block
|
41 |
+
self.conv_kernel_size = conv_kernel_size
|
42 |
+
self.dilation_cycle_length = dilation_cycle_length
|
43 |
+
self.conditioner_size = conditioner_size
|
44 |
+
self.output_channel = output_channel if output_channel > 0 else input_channel
|
45 |
+
|
46 |
+
self.input = nn.Sequential(
|
47 |
+
Conv1d(
|
48 |
+
input_channel,
|
49 |
+
base_channel,
|
50 |
+
1,
|
51 |
+
),
|
52 |
+
nn.ReLU(),
|
53 |
+
)
|
54 |
+
|
55 |
+
self.residual_blocks = nn.ModuleList(
|
56 |
+
[
|
57 |
+
ResidualBlock(
|
58 |
+
channels=base_channel,
|
59 |
+
kernel_size=conv_kernel_size,
|
60 |
+
dilation=2 ** (i % dilation_cycle_length),
|
61 |
+
d_context=conditioner_size,
|
62 |
+
)
|
63 |
+
for i in range(n_res_block)
|
64 |
+
]
|
65 |
+
)
|
66 |
+
|
67 |
+
self.out_proj = nn.Sequential(
|
68 |
+
Conv1d(
|
69 |
+
base_channel,
|
70 |
+
base_channel,
|
71 |
+
1,
|
72 |
+
),
|
73 |
+
nn.ReLU(),
|
74 |
+
zero_module(
|
75 |
+
Conv1d(
|
76 |
+
base_channel,
|
77 |
+
self.output_channel,
|
78 |
+
1,
|
79 |
+
),
|
80 |
+
),
|
81 |
+
)
|
82 |
+
|
83 |
+
def forward(self, x, y, context=None):
|
84 |
+
"""
|
85 |
+
Args:
|
86 |
+
x: Noisy mel-spectrogram [B x ``n_mel`` x L]
|
87 |
+
y: FILM embeddings with the shape of (B, ``base_channel``)
|
88 |
+
context: Context with the shape of [B x ``d_context`` x L], default to None.
|
89 |
+
"""
|
90 |
+
|
91 |
+
h = self.input(x)
|
92 |
+
|
93 |
+
skip = None
|
94 |
+
for i in range(self.n_res_block):
|
95 |
+
h, skip_connection = self.residual_blocks[i](h, y, context)
|
96 |
+
skip = skip_connection if skip is None else skip_connection + skip
|
97 |
+
|
98 |
+
out = skip / math.sqrt(self.n_res_block)
|
99 |
+
|
100 |
+
out = self.out_proj(out)
|
101 |
+
|
102 |
+
return out
|
modules/diffusion/bidilconv/residual_block.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import math
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
from modules.activation_functions import GaU
|
12 |
+
from modules.general.utils import Conv1d
|
13 |
+
|
14 |
+
|
15 |
+
class ResidualBlock(nn.Module):
|
16 |
+
r"""Residual block with dilated convolution, main portion of ``BiDilConv``.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
channels: The number of channels of input and output.
|
20 |
+
kernel_size: The kernel size of dilated convolution.
|
21 |
+
dilation: The dilation rate of dilated convolution.
|
22 |
+
d_context: The dimension of content encoder output, None if don't use context.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
channels: int = 256,
|
28 |
+
kernel_size: int = 3,
|
29 |
+
dilation: int = 1,
|
30 |
+
d_context: int = None,
|
31 |
+
):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
self.context = d_context
|
35 |
+
|
36 |
+
self.gau = GaU(
|
37 |
+
channels,
|
38 |
+
kernel_size,
|
39 |
+
dilation,
|
40 |
+
d_context,
|
41 |
+
)
|
42 |
+
|
43 |
+
self.out_proj = Conv1d(
|
44 |
+
channels,
|
45 |
+
channels * 2,
|
46 |
+
1,
|
47 |
+
)
|
48 |
+
|
49 |
+
def forward(
|
50 |
+
self,
|
51 |
+
x: torch.Tensor,
|
52 |
+
y_emb: torch.Tensor,
|
53 |
+
context: torch.Tensor = None,
|
54 |
+
):
|
55 |
+
"""
|
56 |
+
Args:
|
57 |
+
x: Latent representation inherited from previous residual block
|
58 |
+
with the shape of [B x C x T].
|
59 |
+
y_emb: Embeddings with the shape of [B x C], which will be FILM on the x.
|
60 |
+
context: Context with the shape of [B x ``d_context`` x T], default to None.
|
61 |
+
"""
|
62 |
+
|
63 |
+
h = x + y_emb[..., None]
|
64 |
+
|
65 |
+
if self.context:
|
66 |
+
h = self.gau(h, context)
|
67 |
+
else:
|
68 |
+
h = self.gau(h)
|
69 |
+
|
70 |
+
h = self.out_proj(h)
|
71 |
+
res, skip = h.chunk(2, 1)
|
72 |
+
|
73 |
+
return (res + x) / math.sqrt(2.0), skip
|
modules/diffusion/karras/karras_diffusion.py
ADDED
@@ -0,0 +1,979 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""
|
7 |
+
Based on: https://github.com/crowsonkb/k-diffusion
|
8 |
+
"""
|
9 |
+
import random
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch as th
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
|
16 |
+
# from piq import LPIPS
|
17 |
+
from utils.ssim import SSIM
|
18 |
+
|
19 |
+
from modules.diffusion.karras.random_utils import get_generator
|
20 |
+
|
21 |
+
|
22 |
+
def mean_flat(tensor):
|
23 |
+
"""
|
24 |
+
Take the mean over all non-batch dimensions.
|
25 |
+
"""
|
26 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
27 |
+
|
28 |
+
|
29 |
+
def append_dims(x, target_dims):
|
30 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
31 |
+
dims_to_append = target_dims - x.ndim
|
32 |
+
if dims_to_append < 0:
|
33 |
+
raise ValueError(
|
34 |
+
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
|
35 |
+
)
|
36 |
+
return x[(...,) + (None,) * dims_to_append]
|
37 |
+
|
38 |
+
|
39 |
+
def append_zero(x):
|
40 |
+
return th.cat([x, x.new_zeros([1])])
|
41 |
+
|
42 |
+
|
43 |
+
def get_weightings(weight_schedule, snrs, sigma_data):
|
44 |
+
if weight_schedule == "snr":
|
45 |
+
weightings = snrs
|
46 |
+
elif weight_schedule == "snr+1":
|
47 |
+
weightings = snrs + 1
|
48 |
+
elif weight_schedule == "karras":
|
49 |
+
weightings = snrs + 1.0 / sigma_data**2
|
50 |
+
elif weight_schedule == "truncated-snr":
|
51 |
+
weightings = th.clamp(snrs, min=1.0)
|
52 |
+
elif weight_schedule == "uniform":
|
53 |
+
weightings = th.ones_like(snrs)
|
54 |
+
else:
|
55 |
+
raise NotImplementedError()
|
56 |
+
return weightings
|
57 |
+
|
58 |
+
|
59 |
+
class KarrasDenoiser:
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
sigma_data: float = 0.5,
|
63 |
+
sigma_max=80.0,
|
64 |
+
sigma_min=0.002,
|
65 |
+
rho=7.0,
|
66 |
+
weight_schedule="karras",
|
67 |
+
distillation=False,
|
68 |
+
loss_norm="l2",
|
69 |
+
):
|
70 |
+
self.sigma_data = sigma_data
|
71 |
+
self.sigma_max = sigma_max
|
72 |
+
self.sigma_min = sigma_min
|
73 |
+
self.weight_schedule = weight_schedule
|
74 |
+
self.distillation = distillation
|
75 |
+
self.loss_norm = loss_norm
|
76 |
+
# if loss_norm == "lpips":
|
77 |
+
# self.lpips_loss = LPIPS(replace_pooling=True, reduction="none")
|
78 |
+
if loss_norm == "ssim":
|
79 |
+
self.ssim_loss = SSIM()
|
80 |
+
self.rho = rho
|
81 |
+
self.num_timesteps = 40
|
82 |
+
|
83 |
+
def get_snr(self, sigmas):
|
84 |
+
return sigmas**-2
|
85 |
+
|
86 |
+
def get_sigmas(self, sigmas):
|
87 |
+
return sigmas
|
88 |
+
|
89 |
+
def get_scalings(self, sigma):
|
90 |
+
c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2)
|
91 |
+
c_out = sigma * self.sigma_data / (sigma**2 + self.sigma_data**2) ** 0.5
|
92 |
+
c_in = 1 / (sigma**2 + self.sigma_data**2) ** 0.5
|
93 |
+
return c_skip, c_out, c_in
|
94 |
+
|
95 |
+
def get_scalings_for_boundary_condition(self, sigma):
|
96 |
+
c_skip = self.sigma_data**2 / (
|
97 |
+
(sigma - self.sigma_min) ** 2 + self.sigma_data**2
|
98 |
+
)
|
99 |
+
c_out = (
|
100 |
+
(sigma - self.sigma_min)
|
101 |
+
* self.sigma_data
|
102 |
+
/ (sigma**2 + self.sigma_data**2) ** 0.5
|
103 |
+
)
|
104 |
+
c_in = 1 / (sigma**2 + self.sigma_data**2) ** 0.5
|
105 |
+
return c_skip, c_out, c_in
|
106 |
+
|
107 |
+
def training_losses(self, model, x_start, sigmas, condition=None, noise=None):
|
108 |
+
if noise is None:
|
109 |
+
noise = th.randn_like(x_start)
|
110 |
+
|
111 |
+
terms = {}
|
112 |
+
|
113 |
+
dims = x_start.ndim
|
114 |
+
x_t = x_start + noise * append_dims(sigmas, dims)
|
115 |
+
model_output, denoised = self.denoise(model, x_t, sigmas, condition)
|
116 |
+
|
117 |
+
snrs = self.get_snr(sigmas)
|
118 |
+
weights = append_dims(
|
119 |
+
get_weightings(self.weight_schedule, snrs, self.sigma_data), dims
|
120 |
+
)
|
121 |
+
# terms["xs_mse"] = mean_flat((denoised - x_start) ** 2)
|
122 |
+
terms["mse"] = mean_flat(weights * (denoised - x_start) ** 2)
|
123 |
+
# terms["mae"] = mean_flat(weights * th.abs(denoised - x_start))
|
124 |
+
# terms["mse"] = nn.MSELoss(reduction="none")(denoised, x_start)
|
125 |
+
|
126 |
+
# if "vb" in terms:
|
127 |
+
# terms["loss"] = terms["mse"] + terms["vb"]
|
128 |
+
# else:
|
129 |
+
terms["loss"] = terms["mse"]
|
130 |
+
|
131 |
+
return terms
|
132 |
+
|
133 |
+
def consistency_losses(
|
134 |
+
self,
|
135 |
+
model,
|
136 |
+
x_start,
|
137 |
+
num_scales,
|
138 |
+
# model_kwargs=None,
|
139 |
+
condition=None,
|
140 |
+
target_model=None,
|
141 |
+
teacher_model=None,
|
142 |
+
teacher_diffusion=None,
|
143 |
+
noise=None,
|
144 |
+
):
|
145 |
+
if noise is None:
|
146 |
+
noise = th.randn_like(x_start)
|
147 |
+
|
148 |
+
dims = x_start.ndim
|
149 |
+
|
150 |
+
def denoise_fn(x, t):
|
151 |
+
return self.denoise(model, x, t, condition)[1]
|
152 |
+
|
153 |
+
if target_model:
|
154 |
+
|
155 |
+
@th.no_grad()
|
156 |
+
def target_denoise_fn(x, t):
|
157 |
+
return self.denoise(target_model, x, t, condition)[1]
|
158 |
+
|
159 |
+
else:
|
160 |
+
raise NotImplementedError("Must have a target model")
|
161 |
+
|
162 |
+
if teacher_model:
|
163 |
+
|
164 |
+
@th.no_grad()
|
165 |
+
def teacher_denoise_fn(x, t):
|
166 |
+
return teacher_diffusion.denoise(teacher_model, x, t, condition)[1]
|
167 |
+
|
168 |
+
@th.no_grad()
|
169 |
+
def heun_solver(samples, t, next_t, x0):
|
170 |
+
x = samples
|
171 |
+
if teacher_model is None:
|
172 |
+
denoiser = x0
|
173 |
+
else:
|
174 |
+
denoiser = teacher_denoise_fn(x, t)
|
175 |
+
|
176 |
+
d = (x - denoiser) / append_dims(t, dims)
|
177 |
+
samples = x + d * append_dims(next_t - t, dims)
|
178 |
+
if teacher_model is None:
|
179 |
+
denoiser = x0
|
180 |
+
else:
|
181 |
+
denoiser = teacher_denoise_fn(samples, next_t)
|
182 |
+
|
183 |
+
next_d = (samples - denoiser) / append_dims(next_t, dims)
|
184 |
+
samples = x + (d + next_d) * append_dims((next_t - t) / 2, dims)
|
185 |
+
|
186 |
+
return samples
|
187 |
+
|
188 |
+
@th.no_grad()
|
189 |
+
def euler_solver(samples, t, next_t, x0):
|
190 |
+
x = samples
|
191 |
+
if teacher_model is None:
|
192 |
+
denoiser = x0
|
193 |
+
else:
|
194 |
+
denoiser = teacher_denoise_fn(x, t)
|
195 |
+
d = (x - denoiser) / append_dims(t, dims)
|
196 |
+
samples = x + d * append_dims(next_t - t, dims)
|
197 |
+
|
198 |
+
return samples
|
199 |
+
|
200 |
+
indices = th.randint(
|
201 |
+
0, num_scales - 1, (x_start.shape[0],), device=x_start.device
|
202 |
+
)
|
203 |
+
|
204 |
+
t = self.sigma_max ** (1 / self.rho) + indices / (num_scales - 1) * (
|
205 |
+
self.sigma_min ** (1 / self.rho) - self.sigma_max ** (1 / self.rho)
|
206 |
+
)
|
207 |
+
t = t**self.rho
|
208 |
+
|
209 |
+
t2 = self.sigma_max ** (1 / self.rho) + (indices + 1) / (num_scales - 1) * (
|
210 |
+
self.sigma_min ** (1 / self.rho) - self.sigma_max ** (1 / self.rho)
|
211 |
+
)
|
212 |
+
t2 = t2**self.rho
|
213 |
+
|
214 |
+
x_t = x_start + noise * append_dims(t, dims)
|
215 |
+
|
216 |
+
dropout_state = th.get_rng_state()
|
217 |
+
distiller = denoise_fn(x_t, t)
|
218 |
+
|
219 |
+
if teacher_model is None:
|
220 |
+
x_t2 = euler_solver(x_t, t, t2, x_start).detach()
|
221 |
+
else:
|
222 |
+
x_t2 = heun_solver(x_t, t, t2, x_start).detach()
|
223 |
+
|
224 |
+
th.set_rng_state(dropout_state)
|
225 |
+
distiller_target = target_denoise_fn(x_t2, t2)
|
226 |
+
distiller_target = distiller_target.detach()
|
227 |
+
|
228 |
+
snrs = self.get_snr(t)
|
229 |
+
weights = get_weightings(self.weight_schedule, snrs, self.sigma_data)
|
230 |
+
if self.loss_norm == "l1":
|
231 |
+
diffs = th.abs(distiller - distiller_target)
|
232 |
+
loss = mean_flat(diffs) * weights
|
233 |
+
elif self.loss_norm == "l2":
|
234 |
+
# diffs = (distiller - distiller_target) ** 2
|
235 |
+
loss = F.mse_loss(distiller, distiller_target)
|
236 |
+
# loss = mean_flat(diffs) * weights
|
237 |
+
elif self.loss_norm == "ssim":
|
238 |
+
loss = self.ssim_loss(distiller, distiller_target) * weights
|
239 |
+
# elif self.loss_norm == "l2-32":
|
240 |
+
# distiller = F.interpolate(distiller, size=32, mode="bilinear")
|
241 |
+
# distiller_target = F.interpolate(
|
242 |
+
# distiller_target,
|
243 |
+
# size=32,
|
244 |
+
# mode="bilinear",
|
245 |
+
# )
|
246 |
+
# diffs = (distiller - distiller_target) ** 2
|
247 |
+
# loss = mean_flat(diffs) * weights
|
248 |
+
# elif self.loss_norm == "lpips":
|
249 |
+
# if x_start.shape[-1] < 256:
|
250 |
+
# distiller = F.interpolate(distiller, size=224, mode="bilinear")
|
251 |
+
# distiller_target = F.interpolate(
|
252 |
+
# distiller_target, size=224, mode="bilinear"
|
253 |
+
# )
|
254 |
+
|
255 |
+
# loss = (
|
256 |
+
# self.lpips_loss(
|
257 |
+
# (distiller + 1) / 2.0,
|
258 |
+
# (distiller_target + 1) / 2.0,
|
259 |
+
# )
|
260 |
+
# * weights
|
261 |
+
# )
|
262 |
+
else:
|
263 |
+
raise ValueError(f"Unknown loss norm {self.loss_norm}")
|
264 |
+
|
265 |
+
terms = {}
|
266 |
+
terms["loss"] = loss
|
267 |
+
|
268 |
+
return terms
|
269 |
+
|
270 |
+
# def progdist_losses(
|
271 |
+
# self,
|
272 |
+
# model,
|
273 |
+
# x_start,
|
274 |
+
# num_scales,
|
275 |
+
# model_kwargs=None,
|
276 |
+
# teacher_model=None,
|
277 |
+
# teacher_diffusion=None,
|
278 |
+
# noise=None,
|
279 |
+
# ):
|
280 |
+
# if model_kwargs is None:
|
281 |
+
# model_kwargs = {}
|
282 |
+
# if noise is None:
|
283 |
+
# noise = th.randn_like(x_start)
|
284 |
+
|
285 |
+
# dims = x_start.ndim
|
286 |
+
|
287 |
+
# def denoise_fn(x, t):
|
288 |
+
# return self.denoise(model, x, t, **model_kwargs)[1]
|
289 |
+
|
290 |
+
# @th.no_grad()
|
291 |
+
# def teacher_denoise_fn(x, t):
|
292 |
+
# return teacher_diffusion.denoise(teacher_model, x, t, **model_kwargs)[1]
|
293 |
+
|
294 |
+
# @th.no_grad()
|
295 |
+
# def euler_solver(samples, t, next_t):
|
296 |
+
# x = samples
|
297 |
+
# denoiser = teacher_denoise_fn(x, t)
|
298 |
+
# d = (x - denoiser) / append_dims(t, dims)
|
299 |
+
# samples = x + d * append_dims(next_t - t, dims)
|
300 |
+
|
301 |
+
# return samples
|
302 |
+
|
303 |
+
# @th.no_grad()
|
304 |
+
# def euler_to_denoiser(x_t, t, x_next_t, next_t):
|
305 |
+
# denoiser = x_t - append_dims(t, dims) * (x_next_t - x_t) / append_dims(
|
306 |
+
# next_t - t, dims
|
307 |
+
# )
|
308 |
+
# return denoiser
|
309 |
+
|
310 |
+
# indices = th.randint(0, num_scales, (x_start.shape[0],), device=x_start.device)
|
311 |
+
|
312 |
+
# t = self.sigma_max ** (1 / self.rho) + indices / num_scales * (
|
313 |
+
# self.sigma_min ** (1 / self.rho) - self.sigma_max ** (1 / self.rho)
|
314 |
+
# )
|
315 |
+
# t = t**self.rho
|
316 |
+
|
317 |
+
# t2 = self.sigma_max ** (1 / self.rho) + (indices + 0.5) / num_scales * (
|
318 |
+
# self.sigma_min ** (1 / self.rho) - self.sigma_max ** (1 / self.rho)
|
319 |
+
# )
|
320 |
+
# t2 = t2**self.rho
|
321 |
+
|
322 |
+
# t3 = self.sigma_max ** (1 / self.rho) + (indices + 1) / num_scales * (
|
323 |
+
# self.sigma_min ** (1 / self.rho) - self.sigma_max ** (1 / self.rho)
|
324 |
+
# )
|
325 |
+
# t3 = t3**self.rho
|
326 |
+
|
327 |
+
# x_t = x_start + noise * append_dims(t, dims)
|
328 |
+
|
329 |
+
# denoised_x = denoise_fn(x_t, t)
|
330 |
+
|
331 |
+
# x_t2 = euler_solver(x_t, t, t2).detach()
|
332 |
+
# x_t3 = euler_solver(x_t2, t2, t3).detach()
|
333 |
+
|
334 |
+
# target_x = euler_to_denoiser(x_t, t, x_t3, t3).detach()
|
335 |
+
|
336 |
+
# snrs = self.get_snr(t)
|
337 |
+
# weights = get_weightings(self.weight_schedule, snrs, self.sigma_data)
|
338 |
+
# if self.loss_norm == "l1":
|
339 |
+
# diffs = th.abs(denoised_x - target_x)
|
340 |
+
# loss = mean_flat(diffs) * weights
|
341 |
+
# elif self.loss_norm == "l2":
|
342 |
+
# diffs = (denoised_x - target_x) ** 2
|
343 |
+
# loss = mean_flat(diffs) * weights
|
344 |
+
# elif self.loss_norm == "lpips":
|
345 |
+
# if x_start.shape[-1] < 256:
|
346 |
+
# denoised_x = F.interpolate(denoised_x, size=224, mode="bilinear")
|
347 |
+
# target_x = F.interpolate(target_x, size=224, mode="bilinear")
|
348 |
+
# loss = (
|
349 |
+
# self.lpips_loss(
|
350 |
+
# (denoised_x + 1) / 2.0,
|
351 |
+
# (target_x + 1) / 2.0,
|
352 |
+
# )
|
353 |
+
# * weights
|
354 |
+
# )
|
355 |
+
# else:
|
356 |
+
# raise ValueError(f"Unknown loss norm {self.loss_norm}")
|
357 |
+
|
358 |
+
# terms = {}
|
359 |
+
# terms["loss"] = loss
|
360 |
+
|
361 |
+
# return terms
|
362 |
+
|
363 |
+
def denoise(self, model, x_t, sigmas, condition):
|
364 |
+
if not self.distillation:
|
365 |
+
c_skip, c_out, c_in = [
|
366 |
+
append_dims(x, x_t.ndim) for x in self.get_scalings(sigmas)
|
367 |
+
]
|
368 |
+
else:
|
369 |
+
c_skip, c_out, c_in = [
|
370 |
+
append_dims(x, x_t.ndim)
|
371 |
+
for x in self.get_scalings_for_boundary_condition(sigmas)
|
372 |
+
]
|
373 |
+
rescaled_t = 1000 * 0.25 * th.log(sigmas + 1e-44)
|
374 |
+
# rescaled_t = rescaled_t[:, None]
|
375 |
+
model_output = model(c_in * x_t, rescaled_t, condition)
|
376 |
+
denoised = c_out * model_output + c_skip * x_t
|
377 |
+
return model_output, denoised
|
378 |
+
|
379 |
+
|
380 |
+
def karras_sample(
|
381 |
+
diffusion,
|
382 |
+
model,
|
383 |
+
shape,
|
384 |
+
steps,
|
385 |
+
clip_denoised=True,
|
386 |
+
progress=True,
|
387 |
+
callback=None,
|
388 |
+
# model_kwargs=None,
|
389 |
+
condition=None,
|
390 |
+
device=None,
|
391 |
+
sigma_min=0.002,
|
392 |
+
sigma_max=80, # higher for highres?
|
393 |
+
rho=7.0,
|
394 |
+
sampler="heun",
|
395 |
+
s_churn=0.0,
|
396 |
+
s_tmin=0.0,
|
397 |
+
s_tmax=float("inf"),
|
398 |
+
s_noise=1.0,
|
399 |
+
generator=None,
|
400 |
+
ts=None,
|
401 |
+
):
|
402 |
+
if generator is None:
|
403 |
+
generator = get_generator("dummy")
|
404 |
+
|
405 |
+
if sampler == "progdist":
|
406 |
+
sigmas = get_sigmas_karras(steps + 1, sigma_min, sigma_max, rho, device=device)
|
407 |
+
else:
|
408 |
+
sigmas = get_sigmas_karras(steps, sigma_min, sigma_max, rho, device=device)
|
409 |
+
th.manual_seed(42)
|
410 |
+
x_T = generator.randn(*shape, device=device) * sigma_max
|
411 |
+
sigmas = sigmas.unsqueeze(-1)
|
412 |
+
sample_fn = {
|
413 |
+
"heun": sample_heun,
|
414 |
+
"dpm": sample_dpm,
|
415 |
+
"ancestral": sample_euler_ancestral,
|
416 |
+
"onestep": sample_onestep,
|
417 |
+
"progdist": sample_progdist,
|
418 |
+
"euler": sample_euler,
|
419 |
+
"multistep": stochastic_iterative_sampler,
|
420 |
+
}[sampler]
|
421 |
+
|
422 |
+
if sampler in ["heun", "dpm"]:
|
423 |
+
sampler_args = dict(
|
424 |
+
s_churn=s_churn, s_tmin=s_tmin, s_tmax=s_tmax, s_noise=s_noise
|
425 |
+
)
|
426 |
+
elif sampler == "multistep":
|
427 |
+
sampler_args = dict(
|
428 |
+
ts=ts, t_min=sigma_min, t_max=sigma_max, rho=diffusion.rho, steps=steps
|
429 |
+
)
|
430 |
+
else:
|
431 |
+
sampler_args = {}
|
432 |
+
|
433 |
+
def denoiser(x_t, sigma):
|
434 |
+
_, denoised = diffusion.denoise(model, x_t, sigma, condition)
|
435 |
+
if clip_denoised:
|
436 |
+
denoised = denoised.clamp(-1, 1)
|
437 |
+
return denoised
|
438 |
+
|
439 |
+
x_0 = sample_fn(
|
440 |
+
denoiser,
|
441 |
+
x_T,
|
442 |
+
sigmas,
|
443 |
+
generator,
|
444 |
+
progress=progress,
|
445 |
+
callback=callback,
|
446 |
+
**sampler_args,
|
447 |
+
)
|
448 |
+
return x_0.clamp(-1, 1)
|
449 |
+
|
450 |
+
|
451 |
+
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7.0, device="cpu"):
|
452 |
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
453 |
+
ramp = th.linspace(0, 1, n)
|
454 |
+
min_inv_rho = sigma_min ** (1 / rho)
|
455 |
+
max_inv_rho = sigma_max ** (1 / rho)
|
456 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
457 |
+
return append_zero(sigmas).to(device)
|
458 |
+
|
459 |
+
|
460 |
+
def to_d(x, sigma, denoised):
|
461 |
+
"""Converts a denoiser output to a Karras ODE derivative."""
|
462 |
+
return (x - denoised) / append_dims(sigma, x.ndim)
|
463 |
+
|
464 |
+
|
465 |
+
def get_ancestral_step(sigma_from, sigma_to):
|
466 |
+
"""Calculates the noise level (sigma_down) to step down to and the amount
|
467 |
+
of noise to add (sigma_up) when doing an ancestral sampling step."""
|
468 |
+
sigma_up = (
|
469 |
+
sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2
|
470 |
+
) ** 0.5
|
471 |
+
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
472 |
+
return sigma_down, sigma_up
|
473 |
+
|
474 |
+
|
475 |
+
@th.no_grad()
|
476 |
+
def sample_euler_ancestral(model, x, sigmas, generator, progress=False, callback=None):
|
477 |
+
"""Ancestral sampling with Euler method steps."""
|
478 |
+
s_in = x.new_ones([x.shape[0]])
|
479 |
+
indices = range(len(sigmas) - 1)
|
480 |
+
if progress:
|
481 |
+
from tqdm.auto import tqdm
|
482 |
+
|
483 |
+
indices = tqdm(indices)
|
484 |
+
|
485 |
+
for i in indices:
|
486 |
+
denoised = model(x, sigmas[i] * s_in)
|
487 |
+
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
|
488 |
+
if callback is not None:
|
489 |
+
callback(
|
490 |
+
{
|
491 |
+
"x": x,
|
492 |
+
"i": i,
|
493 |
+
"sigma": sigmas[i],
|
494 |
+
"sigma_hat": sigmas[i],
|
495 |
+
"denoised": denoised,
|
496 |
+
}
|
497 |
+
)
|
498 |
+
d = to_d(x, sigmas[i], denoised)
|
499 |
+
# Euler method
|
500 |
+
dt = sigma_down - sigmas[i]
|
501 |
+
x = x + d * dt
|
502 |
+
x = x + generator.randn_like(x) * sigma_up
|
503 |
+
return x
|
504 |
+
|
505 |
+
|
506 |
+
@th.no_grad()
|
507 |
+
def sample_midpoint_ancestral(model, x, ts, generator, progress=False, callback=None):
|
508 |
+
"""Ancestral sampling with midpoint method steps."""
|
509 |
+
s_in = x.new_ones([x.shape[0]])
|
510 |
+
step_size = 1 / len(ts)
|
511 |
+
if progress:
|
512 |
+
from tqdm.auto import tqdm
|
513 |
+
|
514 |
+
ts = tqdm(ts)
|
515 |
+
|
516 |
+
for tn in ts:
|
517 |
+
dn = model(x, tn * s_in)
|
518 |
+
dn_2 = model(x + (step_size / 2) * dn, (tn + step_size / 2) * s_in)
|
519 |
+
x = x + step_size * dn_2
|
520 |
+
if callback is not None:
|
521 |
+
callback({"x": x, "tn": tn, "dn": dn, "dn_2": dn_2})
|
522 |
+
return x
|
523 |
+
|
524 |
+
|
525 |
+
@th.no_grad()
|
526 |
+
def sample_heun(
|
527 |
+
denoiser,
|
528 |
+
x,
|
529 |
+
sigmas,
|
530 |
+
generator,
|
531 |
+
progress=False,
|
532 |
+
callback=None,
|
533 |
+
s_churn=0.0,
|
534 |
+
s_tmin=0.0,
|
535 |
+
s_tmax=float("inf"),
|
536 |
+
s_noise=1.0,
|
537 |
+
):
|
538 |
+
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
|
539 |
+
s_in = x.new_ones([x.shape[0]])
|
540 |
+
indices = range(len(sigmas) - 1)
|
541 |
+
if progress:
|
542 |
+
from tqdm.auto import tqdm
|
543 |
+
|
544 |
+
indices = tqdm(indices)
|
545 |
+
|
546 |
+
for i in indices:
|
547 |
+
gamma = (
|
548 |
+
min(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
|
549 |
+
if s_tmin <= sigmas[i] <= s_tmax
|
550 |
+
else 0.0
|
551 |
+
)
|
552 |
+
eps = generator.randn_like(x) * s_noise
|
553 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
554 |
+
if gamma > 0:
|
555 |
+
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
|
556 |
+
denoised = denoiser(x, sigma_hat * s_in)
|
557 |
+
d = to_d(x, sigma_hat, denoised)
|
558 |
+
if callback is not None:
|
559 |
+
callback(
|
560 |
+
{
|
561 |
+
"x": x,
|
562 |
+
"i": i,
|
563 |
+
"sigma": sigmas[i],
|
564 |
+
"sigma_hat": sigma_hat,
|
565 |
+
"denoised": denoised,
|
566 |
+
}
|
567 |
+
)
|
568 |
+
dt = sigmas[i + 1] - sigma_hat
|
569 |
+
if sigmas[i + 1] == 0:
|
570 |
+
# Euler method
|
571 |
+
x = x + d * dt
|
572 |
+
else:
|
573 |
+
# Heun's method
|
574 |
+
x_2 = x + d * dt
|
575 |
+
denoised_2 = denoiser(x_2, sigmas[i + 1] * s_in)
|
576 |
+
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
577 |
+
d_prime = (d + d_2) / 2
|
578 |
+
x = x + d_prime * dt
|
579 |
+
return x
|
580 |
+
|
581 |
+
|
582 |
+
@th.no_grad()
|
583 |
+
def sample_euler(
|
584 |
+
denoiser,
|
585 |
+
x,
|
586 |
+
sigmas,
|
587 |
+
generator,
|
588 |
+
progress=False,
|
589 |
+
callback=None,
|
590 |
+
):
|
591 |
+
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
|
592 |
+
s_in = x.new_ones([x.shape[0]])
|
593 |
+
indices = range(len(sigmas) - 1)
|
594 |
+
if progress:
|
595 |
+
from tqdm.auto import tqdm
|
596 |
+
|
597 |
+
indices = tqdm(indices)
|
598 |
+
|
599 |
+
for i in indices:
|
600 |
+
sigma = sigmas[i]
|
601 |
+
denoised = denoiser(x, sigma * s_in)
|
602 |
+
d = to_d(x, sigma, denoised)
|
603 |
+
if callback is not None:
|
604 |
+
callback(
|
605 |
+
{
|
606 |
+
"x": x,
|
607 |
+
"i": i,
|
608 |
+
"sigma": sigmas[i],
|
609 |
+
"denoised": denoised,
|
610 |
+
}
|
611 |
+
)
|
612 |
+
dt = sigmas[i + 1] - sigma
|
613 |
+
x = x + d * dt
|
614 |
+
return x
|
615 |
+
|
616 |
+
|
617 |
+
@th.no_grad()
|
618 |
+
def sample_dpm(
|
619 |
+
denoiser,
|
620 |
+
x,
|
621 |
+
sigmas,
|
622 |
+
generator,
|
623 |
+
progress=False,
|
624 |
+
callback=None,
|
625 |
+
s_churn=0.0,
|
626 |
+
s_tmin=0.0,
|
627 |
+
s_tmax=float("inf"),
|
628 |
+
s_noise=1.0,
|
629 |
+
):
|
630 |
+
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
|
631 |
+
s_in = x.new_ones([x.shape[0]])
|
632 |
+
indices = range(len(sigmas) - 1)
|
633 |
+
if progress:
|
634 |
+
from tqdm.auto import tqdm
|
635 |
+
|
636 |
+
indices = tqdm(indices)
|
637 |
+
|
638 |
+
for i in indices:
|
639 |
+
gamma = (
|
640 |
+
min(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
|
641 |
+
if s_tmin <= sigmas[i] <= s_tmax
|
642 |
+
else 0.0
|
643 |
+
)
|
644 |
+
eps = generator.randn_like(x) * s_noise
|
645 |
+
sigma_hat = sigmas[i] * (gamma + 1)
|
646 |
+
if gamma > 0:
|
647 |
+
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
|
648 |
+
denoised = denoiser(x, sigma_hat * s_in)
|
649 |
+
d = to_d(x, sigma_hat, denoised)
|
650 |
+
if callback is not None:
|
651 |
+
callback(
|
652 |
+
{
|
653 |
+
"x": x,
|
654 |
+
"i": i,
|
655 |
+
"sigma": sigmas[i],
|
656 |
+
"sigma_hat": sigma_hat,
|
657 |
+
"denoised": denoised,
|
658 |
+
}
|
659 |
+
)
|
660 |
+
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
|
661 |
+
sigma_mid = ((sigma_hat ** (1 / 3) + sigmas[i + 1] ** (1 / 3)) / 2) ** 3
|
662 |
+
dt_1 = sigma_mid - sigma_hat
|
663 |
+
dt_2 = sigmas[i + 1] - sigma_hat
|
664 |
+
x_2 = x + d * dt_1
|
665 |
+
denoised_2 = denoiser(x_2, sigma_mid * s_in)
|
666 |
+
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
667 |
+
x = x + d_2 * dt_2
|
668 |
+
return x
|
669 |
+
|
670 |
+
|
671 |
+
@th.no_grad()
|
672 |
+
def sample_onestep(
|
673 |
+
distiller,
|
674 |
+
x,
|
675 |
+
sigmas,
|
676 |
+
generator=None,
|
677 |
+
progress=False,
|
678 |
+
callback=None,
|
679 |
+
):
|
680 |
+
"""Single-step generation from a distilled model."""
|
681 |
+
s_in = x.new_ones([x.shape[0]])
|
682 |
+
return distiller(x, sigmas[0] * s_in)
|
683 |
+
|
684 |
+
|
685 |
+
@th.no_grad()
|
686 |
+
def stochastic_iterative_sampler(
|
687 |
+
distiller,
|
688 |
+
x,
|
689 |
+
sigmas,
|
690 |
+
generator,
|
691 |
+
ts,
|
692 |
+
progress=False,
|
693 |
+
callback=None,
|
694 |
+
t_min=0.002,
|
695 |
+
t_max=80.0,
|
696 |
+
rho=7.0,
|
697 |
+
steps=40,
|
698 |
+
):
|
699 |
+
t_max_rho = t_max ** (1 / rho)
|
700 |
+
t_min_rho = t_min ** (1 / rho)
|
701 |
+
s_in = x.new_ones([x.shape[0]])
|
702 |
+
|
703 |
+
for i in range(len(ts) - 1):
|
704 |
+
t = (t_max_rho + ts[i] / (steps - 1) * (t_min_rho - t_max_rho)) ** rho
|
705 |
+
x0 = distiller(x, t * s_in)
|
706 |
+
next_t = (t_max_rho + ts[i + 1] / (steps - 1) * (t_min_rho - t_max_rho)) ** rho
|
707 |
+
next_t = np.clip(next_t, t_min, t_max)
|
708 |
+
x = x0 + generator.randn_like(x) * np.sqrt(next_t**2 - t_min**2)
|
709 |
+
|
710 |
+
return x
|
711 |
+
|
712 |
+
|
713 |
+
@th.no_grad()
|
714 |
+
def sample_progdist(
|
715 |
+
denoiser,
|
716 |
+
x,
|
717 |
+
sigmas,
|
718 |
+
generator=None,
|
719 |
+
progress=False,
|
720 |
+
callback=None,
|
721 |
+
):
|
722 |
+
s_in = x.new_ones([x.shape[0]])
|
723 |
+
sigmas = sigmas[:-1] # skip the zero sigma
|
724 |
+
|
725 |
+
indices = range(len(sigmas) - 1)
|
726 |
+
if progress:
|
727 |
+
from tqdm.auto import tqdm
|
728 |
+
|
729 |
+
indices = tqdm(indices)
|
730 |
+
|
731 |
+
for i in indices:
|
732 |
+
sigma = sigmas[i]
|
733 |
+
denoised = denoiser(x, sigma * s_in)
|
734 |
+
d = to_d(x, sigma, denoised)
|
735 |
+
if callback is not None:
|
736 |
+
callback(
|
737 |
+
{
|
738 |
+
"x": x,
|
739 |
+
"i": i,
|
740 |
+
"sigma": sigma,
|
741 |
+
"denoised": denoised,
|
742 |
+
}
|
743 |
+
)
|
744 |
+
dt = sigmas[i + 1] - sigma
|
745 |
+
x = x + d * dt
|
746 |
+
|
747 |
+
return x
|
748 |
+
|
749 |
+
|
750 |
+
# @th.no_grad()
|
751 |
+
# def iterative_colorization(
|
752 |
+
# distiller,
|
753 |
+
# images,
|
754 |
+
# x,
|
755 |
+
# ts,
|
756 |
+
# t_min=0.002,
|
757 |
+
# t_max=80.0,
|
758 |
+
# rho=7.0,
|
759 |
+
# steps=40,
|
760 |
+
# generator=None,
|
761 |
+
# ):
|
762 |
+
# def obtain_orthogonal_matrix():
|
763 |
+
# vector = np.asarray([0.2989, 0.5870, 0.1140])
|
764 |
+
# vector = vector / np.linalg.norm(vector)
|
765 |
+
# matrix = np.eye(3)
|
766 |
+
# matrix[:, 0] = vector
|
767 |
+
# matrix = np.linalg.qr(matrix)[0]
|
768 |
+
# if np.sum(matrix[:, 0]) < 0:
|
769 |
+
# matrix = -matrix
|
770 |
+
# return matrix
|
771 |
+
|
772 |
+
# Q = th.from_numpy(obtain_orthogonal_matrix()).to(dist_util.dev()).to(th.float32)
|
773 |
+
# mask = th.zeros(*x.shape[1:], device=dist_util.dev())
|
774 |
+
# mask[0, ...] = 1.0
|
775 |
+
|
776 |
+
# def replacement(x0, x1):
|
777 |
+
# x0 = th.einsum("bchw,cd->bdhw", x0, Q)
|
778 |
+
# x1 = th.einsum("bchw,cd->bdhw", x1, Q)
|
779 |
+
|
780 |
+
# x_mix = x0 * mask + x1 * (1.0 - mask)
|
781 |
+
# x_mix = th.einsum("bdhw,cd->bchw", x_mix, Q)
|
782 |
+
# return x_mix
|
783 |
+
|
784 |
+
# t_max_rho = t_max ** (1 / rho)
|
785 |
+
# t_min_rho = t_min ** (1 / rho)
|
786 |
+
# s_in = x.new_ones([x.shape[0]])
|
787 |
+
# images = replacement(images, th.zeros_like(images))
|
788 |
+
|
789 |
+
# for i in range(len(ts) - 1):
|
790 |
+
# t = (t_max_rho + ts[i] / (steps - 1) * (t_min_rho - t_max_rho)) ** rho
|
791 |
+
# x0 = distiller(x, t * s_in)
|
792 |
+
# x0 = th.clamp(x0, -1.0, 1.0)
|
793 |
+
# x0 = replacement(images, x0)
|
794 |
+
# next_t = (t_max_rho + ts[i + 1] / (steps - 1) * (t_min_rho - t_max_rho)) ** rho
|
795 |
+
# next_t = np.clip(next_t, t_min, t_max)
|
796 |
+
# x = x0 + generator.randn_like(x) * np.sqrt(next_t**2 - t_min**2)
|
797 |
+
|
798 |
+
# return x, images
|
799 |
+
|
800 |
+
|
801 |
+
# @th.no_grad()
|
802 |
+
# def iterative_inpainting(
|
803 |
+
# distiller,
|
804 |
+
# images,
|
805 |
+
# x,
|
806 |
+
# ts,
|
807 |
+
# t_min=0.002,
|
808 |
+
# t_max=80.0,
|
809 |
+
# rho=7.0,
|
810 |
+
# steps=40,
|
811 |
+
# generator=None,
|
812 |
+
# ):
|
813 |
+
# from PIL import Image, ImageDraw, ImageFont
|
814 |
+
|
815 |
+
# image_size = x.shape[-1]
|
816 |
+
|
817 |
+
# # create a blank image with a white background
|
818 |
+
# img = Image.new("RGB", (image_size, image_size), color="white")
|
819 |
+
|
820 |
+
# # get a drawing context for the image
|
821 |
+
# draw = ImageDraw.Draw(img)
|
822 |
+
|
823 |
+
# # load a font
|
824 |
+
# font = ImageFont.truetype("arial.ttf", 250)
|
825 |
+
|
826 |
+
# # draw the letter "C" in black
|
827 |
+
# draw.text((50, 0), "S", font=font, fill=(0, 0, 0))
|
828 |
+
|
829 |
+
# # convert the image to a numpy array
|
830 |
+
# img_np = np.array(img)
|
831 |
+
# img_np = img_np.transpose(2, 0, 1)
|
832 |
+
# img_th = th.from_numpy(img_np).to(dist_util.dev())
|
833 |
+
|
834 |
+
# mask = th.zeros(*x.shape, device=dist_util.dev())
|
835 |
+
# mask = mask.reshape(-1, 7, 3, image_size, image_size)
|
836 |
+
|
837 |
+
# mask[::2, :, img_th > 0.5] = 1.0
|
838 |
+
# mask[1::2, :, img_th < 0.5] = 1.0
|
839 |
+
# mask = mask.reshape(-1, 3, image_size, image_size)
|
840 |
+
|
841 |
+
# def replacement(x0, x1):
|
842 |
+
# x_mix = x0 * mask + x1 * (1 - mask)
|
843 |
+
# return x_mix
|
844 |
+
|
845 |
+
# t_max_rho = t_max ** (1 / rho)
|
846 |
+
# t_min_rho = t_min ** (1 / rho)
|
847 |
+
# s_in = x.new_ones([x.shape[0]])
|
848 |
+
# images = replacement(images, -th.ones_like(images))
|
849 |
+
|
850 |
+
# for i in range(len(ts) - 1):
|
851 |
+
# t = (t_max_rho + ts[i] / (steps - 1) * (t_min_rho - t_max_rho)) ** rho
|
852 |
+
# x0 = distiller(x, t * s_in)
|
853 |
+
# x0 = th.clamp(x0, -1.0, 1.0)
|
854 |
+
# x0 = replacement(images, x0)
|
855 |
+
# next_t = (t_max_rho + ts[i + 1] / (steps - 1) * (t_min_rho - t_max_rho)) ** rho
|
856 |
+
# next_t = np.clip(next_t, t_min, t_max)
|
857 |
+
# x = x0 + generator.randn_like(x) * np.sqrt(next_t**2 - t_min**2)
|
858 |
+
|
859 |
+
# return x, images
|
860 |
+
|
861 |
+
|
862 |
+
# @th.no_grad()
|
863 |
+
# def iterative_superres(
|
864 |
+
# distiller,
|
865 |
+
# images,
|
866 |
+
# x,
|
867 |
+
# ts,
|
868 |
+
# t_min=0.002,
|
869 |
+
# t_max=80.0,
|
870 |
+
# rho=7.0,
|
871 |
+
# steps=40,
|
872 |
+
# generator=None,
|
873 |
+
# ):
|
874 |
+
# patch_size = 8
|
875 |
+
|
876 |
+
# def obtain_orthogonal_matrix():
|
877 |
+
# vector = np.asarray([1] * patch_size**2)
|
878 |
+
# vector = vector / np.linalg.norm(vector)
|
879 |
+
# matrix = np.eye(patch_size**2)
|
880 |
+
# matrix[:, 0] = vector
|
881 |
+
# matrix = np.linalg.qr(matrix)[0]
|
882 |
+
# if np.sum(matrix[:, 0]) < 0:
|
883 |
+
# matrix = -matrix
|
884 |
+
# return matrix
|
885 |
+
|
886 |
+
# Q = th.from_numpy(obtain_orthogonal_matrix()).to(dist_util.dev()).to(th.float32)
|
887 |
+
|
888 |
+
# image_size = x.shape[-1]
|
889 |
+
|
890 |
+
# def replacement(x0, x1):
|
891 |
+
# x0_flatten = (
|
892 |
+
# x0.reshape(-1, 3, image_size, image_size)
|
893 |
+
# .reshape(
|
894 |
+
# -1,
|
895 |
+
# 3,
|
896 |
+
# image_size // patch_size,
|
897 |
+
# patch_size,
|
898 |
+
# image_size // patch_size,
|
899 |
+
# patch_size,
|
900 |
+
# )
|
901 |
+
# .permute(0, 1, 2, 4, 3, 5)
|
902 |
+
# .reshape(-1, 3, image_size**2 // patch_size**2, patch_size**2)
|
903 |
+
# )
|
904 |
+
# x1_flatten = (
|
905 |
+
# x1.reshape(-1, 3, image_size, image_size)
|
906 |
+
# .reshape(
|
907 |
+
# -1,
|
908 |
+
# 3,
|
909 |
+
# image_size // patch_size,
|
910 |
+
# patch_size,
|
911 |
+
# image_size // patch_size,
|
912 |
+
# patch_size,
|
913 |
+
# )
|
914 |
+
# .permute(0, 1, 2, 4, 3, 5)
|
915 |
+
# .reshape(-1, 3, image_size**2 // patch_size**2, patch_size**2)
|
916 |
+
# )
|
917 |
+
# x0 = th.einsum("bcnd,de->bcne", x0_flatten, Q)
|
918 |
+
# x1 = th.einsum("bcnd,de->bcne", x1_flatten, Q)
|
919 |
+
# x_mix = x0.new_zeros(x0.shape)
|
920 |
+
# x_mix[..., 0] = x0[..., 0]
|
921 |
+
# x_mix[..., 1:] = x1[..., 1:]
|
922 |
+
# x_mix = th.einsum("bcne,de->bcnd", x_mix, Q)
|
923 |
+
# x_mix = (
|
924 |
+
# x_mix.reshape(
|
925 |
+
# -1,
|
926 |
+
# 3,
|
927 |
+
# image_size // patch_size,
|
928 |
+
# image_size // patch_size,
|
929 |
+
# patch_size,
|
930 |
+
# patch_size,
|
931 |
+
# )
|
932 |
+
# .permute(0, 1, 2, 4, 3, 5)
|
933 |
+
# .reshape(-1, 3, image_size, image_size)
|
934 |
+
# )
|
935 |
+
# return x_mix
|
936 |
+
|
937 |
+
# def average_image_patches(x):
|
938 |
+
# x_flatten = (
|
939 |
+
# x.reshape(-1, 3, image_size, image_size)
|
940 |
+
# .reshape(
|
941 |
+
# -1,
|
942 |
+
# 3,
|
943 |
+
# image_size // patch_size,
|
944 |
+
# patch_size,
|
945 |
+
# image_size // patch_size,
|
946 |
+
# patch_size,
|
947 |
+
# )
|
948 |
+
# .permute(0, 1, 2, 4, 3, 5)
|
949 |
+
# .reshape(-1, 3, image_size**2 // patch_size**2, patch_size**2)
|
950 |
+
# )
|
951 |
+
# x_flatten[..., :] = x_flatten.mean(dim=-1, keepdim=True)
|
952 |
+
# return (
|
953 |
+
# x_flatten.reshape(
|
954 |
+
# -1,
|
955 |
+
# 3,
|
956 |
+
# image_size // patch_size,
|
957 |
+
# image_size // patch_size,
|
958 |
+
# patch_size,
|
959 |
+
# patch_size,
|
960 |
+
# )
|
961 |
+
# .permute(0, 1, 2, 4, 3, 5)
|
962 |
+
# .reshape(-1, 3, image_size, image_size)
|
963 |
+
# )
|
964 |
+
|
965 |
+
# t_max_rho = t_max ** (1 / rho)
|
966 |
+
# t_min_rho = t_min ** (1 / rho)
|
967 |
+
# s_in = x.new_ones([x.shape[0]])
|
968 |
+
# images = average_image_patches(images)
|
969 |
+
|
970 |
+
# for i in range(len(ts) - 1):
|
971 |
+
# t = (t_max_rho + ts[i] / (steps - 1) * (t_min_rho - t_max_rho)) ** rho
|
972 |
+
# x0 = distiller(x, t * s_in)
|
973 |
+
# x0 = th.clamp(x0, -1.0, 1.0)
|
974 |
+
# x0 = replacement(images, x0)
|
975 |
+
# next_t = (t_max_rho + ts[i + 1] / (steps - 1) * (t_min_rho - t_max_rho)) ** rho
|
976 |
+
# next_t = np.clip(next_t, t_min, t_max)
|
977 |
+
# x = x0 + generator.randn_like(x) * np.sqrt(next_t**2 - t_min**2)
|
978 |
+
|
979 |
+
# return x, images
|
modules/diffusion/karras/random_utils.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023 Amphion.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import torch as th
|
7 |
+
|
8 |
+
|
9 |
+
def get_generator(generator, num_samples=0, seed=0):
|
10 |
+
if generator == "dummy":
|
11 |
+
return DummyGenerator()
|
12 |
+
elif generator == "determ":
|
13 |
+
return DeterministicGenerator(num_samples, seed)
|
14 |
+
elif generator == "determ-indiv":
|
15 |
+
return DeterministicIndividualGenerator(num_samples, seed)
|
16 |
+
else:
|
17 |
+
raise NotImplementedError
|
18 |
+
|
19 |
+
|
20 |
+
class DummyGenerator:
|
21 |
+
def randn(self, *args, **kwargs):
|
22 |
+
return th.randn(*args, **kwargs)
|
23 |
+
|
24 |
+
def randint(self, *args, **kwargs):
|
25 |
+
return th.randint(*args, **kwargs)
|
26 |
+
|
27 |
+
def randn_like(self, *args, **kwargs):
|
28 |
+
return th.randn_like(*args, **kwargs)
|
29 |
+
|
30 |
+
|
31 |
+
class DeterministicGenerator:
|
32 |
+
"""
|
33 |
+
RNG to deterministically sample num_samples samples that does not depend on batch_size or mpi_machines
|
34 |
+
Uses a single rng and samples num_samples sized randomness and subsamples the current indices
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self, num_samples, seed=0):
|
38 |
+
print("Warning: Distributed not initialised, using single rank")
|
39 |
+
self.rank = 0
|
40 |
+
self.world_size = 1
|
41 |
+
self.num_samples = num_samples
|
42 |
+
self.done_samples = 0
|
43 |
+
self.seed = seed
|
44 |
+
self.rng_cpu = th.Generator()
|
45 |
+
if th.cuda.is_available():
|
46 |
+
self.rng_cuda = th.Generator(dist_util.dev())
|
47 |
+
self.set_seed(seed)
|
48 |
+
|
49 |
+
def get_global_size_and_indices(self, size):
|
50 |
+
global_size = (self.num_samples, *size[1:])
|
51 |
+
indices = th.arange(
|
52 |
+
self.done_samples + self.rank,
|
53 |
+
self.done_samples + self.world_size * int(size[0]),
|
54 |
+
self.world_size,
|
55 |
+
)
|
56 |
+
indices = th.clamp(indices, 0, self.num_samples - 1)
|
57 |
+
assert (
|
58 |
+
len(indices) == size[0]
|
59 |
+
), f"rank={self.rank}, ws={self.world_size}, l={len(indices)}, bs={size[0]}"
|
60 |
+
return global_size, indices
|
61 |
+
|
62 |
+
def get_generator(self, device):
|
63 |
+
return self.rng_cpu if th.device(device).type == "cpu" else self.rng_cuda
|
64 |
+
|
65 |
+
def randn(self, *size, dtype=th.float, device="cpu"):
|
66 |
+
global_size, indices = self.get_global_size_and_indices(size)
|
67 |
+
generator = self.get_generator(device)
|
68 |
+
return th.randn(*global_size, generator=generator, dtype=dtype, device=device)[
|
69 |
+
indices
|
70 |
+
]
|
71 |
+
|
72 |
+
def randint(self, low, high, size, dtype=th.long, device="cpu"):
|
73 |
+
global_size, indices = self.get_global_size_and_indices(size)
|
74 |
+
generator = self.get_generator(device)
|
75 |
+
return th.randint(
|
76 |
+
low, high, generator=generator, size=global_size, dtype=dtype, device=device
|
77 |
+
)[indices]
|
78 |
+
|
79 |
+
def randn_like(self, tensor):
|
80 |
+
size, dtype, device = tensor.size(), tensor.dtype, tensor.device
|
81 |
+
return self.randn(*size, dtype=dtype, device=device)
|
82 |
+
|
83 |
+
def set_done_samples(self, done_samples):
|
84 |
+
self.done_samples = done_samples
|
85 |
+
self.set_seed(self.seed)
|
86 |
+
|
87 |
+
def get_seed(self):
|
88 |
+
return self.seed
|
89 |
+
|
90 |
+
def set_seed(self, seed):
|
91 |
+
self.rng_cpu.manual_seed(seed)
|
92 |
+
if th.cuda.is_available():
|
93 |
+
self.rng_cuda.manual_seed(seed)
|
94 |
+
|
95 |
+
|
96 |
+
class DeterministicIndividualGenerator:
|
97 |
+
"""
|
98 |
+
RNG to deterministically sample num_samples samples that does not depend on batch_size or mpi_machines
|
99 |
+
Uses a separate rng for each sample to reduce memoery usage
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, num_samples, seed=0):
|
103 |
+
print("Warning: Distributed not initialised, using single rank")
|
104 |
+
self.rank = 0
|
105 |
+
self.world_size = 1
|
106 |
+
self.num_samples = num_samples
|
107 |
+
self.done_samples = 0
|
108 |
+
self.seed = seed
|
109 |
+
self.rng_cpu = [th.Generator() for _ in range(num_samples)]
|
110 |
+
if th.cuda.is_available():
|
111 |
+
self.rng_cuda = [th.Generator(dist_util.dev()) for _ in range(num_samples)]
|
112 |
+
self.set_seed(seed)
|
113 |
+
|
114 |
+
def get_size_and_indices(self, size):
|
115 |
+
indices = th.arange(
|
116 |
+
self.done_samples + self.rank,
|
117 |
+
self.done_samples + self.world_size * int(size[0]),
|
118 |
+
self.world_size,
|
119 |
+
)
|
120 |
+
indices = th.clamp(indices, 0, self.num_samples - 1)
|
121 |
+
assert (
|
122 |
+
len(indices) == size[0]
|
123 |
+
), f"rank={self.rank}, ws={self.world_size}, l={len(indices)}, bs={size[0]}"
|
124 |
+
return (1, *size[1:]), indices
|
125 |
+
|
126 |
+
def get_generator(self, device):
|
127 |
+
return self.rng_cpu if th.device(device).type == "cpu" else self.rng_cuda
|
128 |
+
|
129 |
+
def randn(self, *size, dtype=th.float, device="cpu"):
|
130 |
+
size, indices = self.get_size_and_indices(size)
|
131 |
+
generator = self.get_generator(device)
|
132 |
+
return th.cat(
|
133 |
+
[
|
134 |
+
th.randn(*size, generator=generator[i], dtype=dtype, device=device)
|
135 |
+
for i in indices
|
136 |
+
],
|
137 |
+
dim=0,
|
138 |
+
)
|
139 |
+
|
140 |
+
def randint(self, low, high, size, dtype=th.long, device="cpu"):
|
141 |
+
size, indices = self.get_size_and_indices(size)
|
142 |
+
generator = self.get_generator(device)
|
143 |
+
return th.cat(
|
144 |
+
[
|
145 |
+
th.randint(
|
146 |
+
low,
|
147 |
+
high,
|
148 |
+
generator=generator[i],
|
149 |
+
size=size,
|
150 |
+
dtype=dtype,
|
151 |
+
device=device,
|
152 |
+
)
|
153 |
+
for i in indices
|
154 |
+
],
|
155 |
+
dim=0,
|
156 |
+
)
|
157 |
+
|
158 |
+
def randn_like(self, tensor):
|
159 |
+
size, dtype, device = tensor.size(), tensor.dtype, tensor.device
|
160 |
+
return self.randn(*size, dtype=dtype, device=device)
|
161 |
+
|
162 |
+
def set_done_samples(self, done_samples):
|
163 |
+
self.done_samples = done_samples
|
164 |
+
|
165 |
+
def get_seed(self):
|
166 |
+
return self.seed
|
167 |
+
|
168 |
+
def set_seed(self, seed):
|
169 |
+
[
|
170 |
+
rng_cpu.manual_seed(i + self.num_samples * seed)
|
171 |
+
for i, rng_cpu in enumerate(self.rng_cpu)
|
172 |
+
]
|
173 |
+
if th.cuda.is_available():
|
174 |
+
[
|
175 |
+
rng_cuda.manual_seed(i + self.num_samples * seed)
|
176 |
+
for i, rng_cuda in enumerate(self.rng_cuda)
|
177 |
+
]
|