Spaces:
Running
on
A10G
Running
on
A10G
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
from torch import nn, pow, sin | |
from torch.nn import Parameter | |
class Snake(nn.Module): | |
r"""Implementation of a sine-based periodic activation function. | |
Alpha is initialized to 1 by default, higher values means higher frequency. | |
It will be trained along with the rest of your model. | |
Args: | |
in_features: shape of the input | |
alpha: trainable parameter | |
Shape: | |
- Input: (B, C, T) | |
- Output: (B, C, T), same shape as the input | |
References: | |
This activation function is from this paper by Liu Ziyin, Tilman Hartwig, | |
Masahito Ueda: https://arxiv.org/abs/2006.08195 | |
Examples: | |
>>> a1 = Snake(256) | |
>>> x = torch.randn(256) | |
>>> x = a1(x) | |
""" | |
def __init__( | |
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False | |
): | |
super(Snake, self).__init__() | |
self.in_features = in_features | |
# initialize alpha | |
self.alpha_logscale = alpha_logscale | |
if self.alpha_logscale: # log scale alphas initialized to zeros | |
self.alpha = Parameter(torch.zeros(in_features) * alpha) | |
else: # linear scale alphas initialized to ones | |
self.alpha = Parameter(torch.ones(in_features) * alpha) | |
self.alpha.requires_grad = alpha_trainable | |
self.no_div_by_zero = 0.000000001 | |
def forward(self, x): | |
r"""Forward pass of the function. Applies the function to the input elementwise. | |
Snake ∶= x + 1/a * sin^2 (ax) | |
""" | |
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T] | |
if self.alpha_logscale: | |
alpha = torch.exp(alpha) | |
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2) | |
return x | |
class SnakeBeta(nn.Module): | |
r"""A modified Snake function which uses separate parameters for the magnitude | |
of the periodic components. Alpha is initialized to 1 by default, | |
higher values means higher frequency. Beta is initialized to 1 by default, | |
higher values means higher magnitude. Both will be trained along with the | |
rest of your model. | |
Args: | |
in_features: shape of the input | |
alpha: trainable parameter that controls frequency | |
beta: trainable parameter that controls magnitude | |
Shape: | |
- Input: (B, C, T) | |
- Output: (B, C, T), same shape as the input | |
References: | |
This activation function is a modified version based on this paper by Liu Ziyin, | |
Tilman Hartwig, Masahito Ueda: https://arxiv.org/abs/2006.08195 | |
Examples: | |
>>> a1 = SnakeBeta(256) | |
>>> x = torch.randn(256) | |
>>> x = a1(x) | |
""" | |
def __init__( | |
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False | |
): | |
super(SnakeBeta, self).__init__() | |
self.in_features = in_features | |
# initialize alpha | |
self.alpha_logscale = alpha_logscale | |
if self.alpha_logscale: # log scale alphas initialized to zeros | |
self.alpha = Parameter(torch.zeros(in_features) * alpha) | |
self.beta = Parameter(torch.zeros(in_features) * alpha) | |
else: # linear scale alphas initialized to ones | |
self.alpha = Parameter(torch.ones(in_features) * alpha) | |
self.beta = Parameter(torch.ones(in_features) * alpha) | |
self.alpha.requires_grad = alpha_trainable | |
self.beta.requires_grad = alpha_trainable | |
self.no_div_by_zero = 0.000000001 | |
def forward(self, x): | |
r"""Forward pass of the function. Applies the function to the input elementwise. | |
SnakeBeta ∶= x + 1/b * sin^2 (xa) | |
""" | |
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T] | |
beta = self.beta.unsqueeze(0).unsqueeze(-1) | |
if self.alpha_logscale: | |
alpha = torch.exp(alpha) | |
beta = torch.exp(beta) | |
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2) | |
return x | |