File size: 6,857 Bytes
0883aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

import random

import torch
import torch.distributed as dist
from torch.utils.data import IterableDataset

import wenet.dataset.processor as processor
from wenet.utils.file_utils import read_lists


class Processor(IterableDataset):
    def __init__(self, source, f, *args, **kw):
        assert callable(f)
        self.source = source
        self.f = f
        self.args = args
        self.kw = kw

    def set_epoch(self, epoch):
        self.source.set_epoch(epoch)

    def __iter__(self):
        """Return an iterator over the source dataset processed by the
        given processor.
        """
        assert self.source is not None
        assert callable(self.f)
        return self.f(iter(self.source), *self.args, **self.kw)

    def apply(self, f):
        assert callable(f)
        return Processor(self, f, *self.args, **self.kw)


class DistributedSampler:
    def __init__(self, shuffle=True, partition=True):
        self.epoch = -1
        self.update()
        self.shuffle = shuffle
        self.partition = partition

    def update(self):
        assert dist.is_available()
        if dist.is_initialized():
            self.rank = dist.get_rank()
            self.world_size = dist.get_world_size()
        else:
            self.rank = 0
            self.world_size = 1
        worker_info = torch.utils.data.get_worker_info()
        if worker_info is None:
            self.worker_id = 0
            self.num_workers = 1
        else:
            self.worker_id = worker_info.id
            self.num_workers = worker_info.num_workers
        return dict(
            rank=self.rank,
            world_size=self.world_size,
            worker_id=self.worker_id,
            num_workers=self.num_workers,
        )

    def set_epoch(self, epoch):
        self.epoch = epoch

    def sample(self, data):
        """Sample data according to rank/world_size/num_workers

        Args:
            data(List): input data list

        Returns:
            List: data list after sample
        """
        data = list(range(len(data)))
        # TODO(Binbin Zhang): fix this
        # We can not handle uneven data for CV on DDP, so we don't
        # sample data by rank, that means every GPU gets the same
        # and all the CV data
        if self.partition:
            if self.shuffle:
                random.Random(self.epoch).shuffle(data)
            data = data[self.rank :: self.world_size]
        data = data[self.worker_id :: self.num_workers]
        return data


class DataList(IterableDataset):
    def __init__(self, lists, shuffle=True, partition=True):
        self.lists = lists
        self.sampler = DistributedSampler(shuffle, partition)

    def set_epoch(self, epoch):
        self.sampler.set_epoch(epoch)

    def __iter__(self):
        sampler_info = self.sampler.update()
        indexes = self.sampler.sample(self.lists)
        for index in indexes:
            # yield dict(src=src)
            data = dict(src=self.lists[index])
            data.update(sampler_info)
            yield data


def Dataset(
    data_type,
    data_list_file,
    symbol_table,
    conf,
    bpe_model=None,
    non_lang_syms=None,
    partition=True,
):
    """Construct dataset from arguments

    We have two shuffle stage in the Dataset. The first is global
    shuffle at shards tar/raw file level. The second is global shuffle
    at training samples level.

    Args:
        data_type(str): raw/shard
        bpe_model(str): model for english bpe part
        partition(bool): whether to do data partition in terms of rank
    """
    assert data_type in ["raw", "shard"]
    lists = read_lists(data_list_file)
    shuffle = conf.get("shuffle", True)
    dataset = DataList(lists, shuffle=shuffle, partition=partition)
    if data_type == "shard":
        dataset = Processor(dataset, processor.url_opener)
        dataset = Processor(dataset, processor.tar_file_and_group)
    else:
        dataset = Processor(dataset, processor.parse_raw)

    dataset = Processor(
        dataset,
        processor.tokenize,
        symbol_table,
        bpe_model,
        non_lang_syms,
        conf.get("split_with_space", False),
    )
    filter_conf = conf.get("filter_conf", {})
    dataset = Processor(dataset, processor.filter, **filter_conf)

    resample_conf = conf.get("resample_conf", {})
    dataset = Processor(dataset, processor.resample, **resample_conf)

    speed_perturb = conf.get("speed_perturb", False)
    if speed_perturb:
        dataset = Processor(dataset, processor.speed_perturb)

    feats_type = conf.get("feats_type", "fbank")
    assert feats_type in ["fbank", "mfcc"]
    if feats_type == "fbank":
        fbank_conf = conf.get("fbank_conf", {})
        dataset = Processor(dataset, processor.compute_fbank, **fbank_conf)
    elif feats_type == "mfcc":
        mfcc_conf = conf.get("mfcc_conf", {})
        dataset = Processor(dataset, processor.compute_mfcc, **mfcc_conf)

    spec_aug = conf.get("spec_aug", True)
    spec_sub = conf.get("spec_sub", False)
    spec_trim = conf.get("spec_trim", False)
    if spec_aug:
        spec_aug_conf = conf.get("spec_aug_conf", {})
        dataset = Processor(dataset, processor.spec_aug, **spec_aug_conf)
    if spec_sub:
        spec_sub_conf = conf.get("spec_sub_conf", {})
        dataset = Processor(dataset, processor.spec_sub, **spec_sub_conf)
    if spec_trim:
        spec_trim_conf = conf.get("spec_trim_conf", {})
        dataset = Processor(dataset, processor.spec_trim, **spec_trim_conf)

    if shuffle:
        shuffle_conf = conf.get("shuffle_conf", {})
        dataset = Processor(dataset, processor.shuffle, **shuffle_conf)

    sort = conf.get("sort", True)
    if sort:
        sort_conf = conf.get("sort_conf", {})
        dataset = Processor(dataset, processor.sort, **sort_conf)

    batch_conf = conf.get("batch_conf", {})
    dataset = Processor(dataset, processor.batch, **batch_conf)
    dataset = Processor(dataset, processor.padding)
    return dataset