File size: 6,055 Bytes
0883aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch as th


def get_generator(generator, num_samples=0, seed=0):
    if generator == "dummy":
        return DummyGenerator()
    elif generator == "determ":
        return DeterministicGenerator(num_samples, seed)
    elif generator == "determ-indiv":
        return DeterministicIndividualGenerator(num_samples, seed)
    else:
        raise NotImplementedError


class DummyGenerator:
    def randn(self, *args, **kwargs):
        return th.randn(*args, **kwargs)

    def randint(self, *args, **kwargs):
        return th.randint(*args, **kwargs)

    def randn_like(self, *args, **kwargs):
        return th.randn_like(*args, **kwargs)


class DeterministicGenerator:
    """
    RNG to deterministically sample num_samples samples that does not depend on batch_size or mpi_machines
    Uses a single rng and samples num_samples sized randomness and subsamples the current indices
    """

    def __init__(self, num_samples, seed=0):
        print("Warning: Distributed not initialised, using single rank")
        self.rank = 0
        self.world_size = 1
        self.num_samples = num_samples
        self.done_samples = 0
        self.seed = seed
        self.rng_cpu = th.Generator()
        if th.cuda.is_available():
            self.rng_cuda = th.Generator(dist_util.dev())
        self.set_seed(seed)

    def get_global_size_and_indices(self, size):
        global_size = (self.num_samples, *size[1:])
        indices = th.arange(
            self.done_samples + self.rank,
            self.done_samples + self.world_size * int(size[0]),
            self.world_size,
        )
        indices = th.clamp(indices, 0, self.num_samples - 1)
        assert (
            len(indices) == size[0]
        ), f"rank={self.rank}, ws={self.world_size}, l={len(indices)}, bs={size[0]}"
        return global_size, indices

    def get_generator(self, device):
        return self.rng_cpu if th.device(device).type == "cpu" else self.rng_cuda

    def randn(self, *size, dtype=th.float, device="cpu"):
        global_size, indices = self.get_global_size_and_indices(size)
        generator = self.get_generator(device)
        return th.randn(*global_size, generator=generator, dtype=dtype, device=device)[
            indices
        ]

    def randint(self, low, high, size, dtype=th.long, device="cpu"):
        global_size, indices = self.get_global_size_and_indices(size)
        generator = self.get_generator(device)
        return th.randint(
            low, high, generator=generator, size=global_size, dtype=dtype, device=device
        )[indices]

    def randn_like(self, tensor):
        size, dtype, device = tensor.size(), tensor.dtype, tensor.device
        return self.randn(*size, dtype=dtype, device=device)

    def set_done_samples(self, done_samples):
        self.done_samples = done_samples
        self.set_seed(self.seed)

    def get_seed(self):
        return self.seed

    def set_seed(self, seed):
        self.rng_cpu.manual_seed(seed)
        if th.cuda.is_available():
            self.rng_cuda.manual_seed(seed)


class DeterministicIndividualGenerator:
    """
    RNG to deterministically sample num_samples samples that does not depend on batch_size or mpi_machines
    Uses a separate rng for each sample to reduce memoery usage
    """

    def __init__(self, num_samples, seed=0):
        print("Warning: Distributed not initialised, using single rank")
        self.rank = 0
        self.world_size = 1
        self.num_samples = num_samples
        self.done_samples = 0
        self.seed = seed
        self.rng_cpu = [th.Generator() for _ in range(num_samples)]
        if th.cuda.is_available():
            self.rng_cuda = [th.Generator(dist_util.dev()) for _ in range(num_samples)]
        self.set_seed(seed)

    def get_size_and_indices(self, size):
        indices = th.arange(
            self.done_samples + self.rank,
            self.done_samples + self.world_size * int(size[0]),
            self.world_size,
        )
        indices = th.clamp(indices, 0, self.num_samples - 1)
        assert (
            len(indices) == size[0]
        ), f"rank={self.rank}, ws={self.world_size}, l={len(indices)}, bs={size[0]}"
        return (1, *size[1:]), indices

    def get_generator(self, device):
        return self.rng_cpu if th.device(device).type == "cpu" else self.rng_cuda

    def randn(self, *size, dtype=th.float, device="cpu"):
        size, indices = self.get_size_and_indices(size)
        generator = self.get_generator(device)
        return th.cat(
            [
                th.randn(*size, generator=generator[i], dtype=dtype, device=device)
                for i in indices
            ],
            dim=0,
        )

    def randint(self, low, high, size, dtype=th.long, device="cpu"):
        size, indices = self.get_size_and_indices(size)
        generator = self.get_generator(device)
        return th.cat(
            [
                th.randint(
                    low,
                    high,
                    generator=generator[i],
                    size=size,
                    dtype=dtype,
                    device=device,
                )
                for i in indices
            ],
            dim=0,
        )

    def randn_like(self, tensor):
        size, dtype, device = tensor.size(), tensor.dtype, tensor.device
        return self.randn(*size, dtype=dtype, device=device)

    def set_done_samples(self, done_samples):
        self.done_samples = done_samples

    def get_seed(self):
        return self.seed

    def set_seed(self, seed):
        [
            rng_cpu.manual_seed(i + self.num_samples * seed)
            for i, rng_cpu in enumerate(self.rng_cpu)
        ]
        if th.cuda.is_available():
            [
                rng_cuda.manual_seed(i + self.num_samples * seed)
                for i, rng_cuda in enumerate(self.rng_cuda)
            ]