Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
labels = labels = ['Comment (Expert / Leadership)', 'Personal News','Event Participation', 'Obituary', 'Award / Recognition', 'Company achievement', | |
'Financial Insight of stockholding', 'Job Updates', 'Philanthropy', 'Negative News', 'Achievement / Highlighting'] | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model_name = 'abdulmatinomotoso/finetuned-distilbert-shidhant-emotion-article-categorization' | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def get_category(text): | |
#text = read_in_text(file.name) | |
input_tensor = tokenizer.encode(text, return_tensors='pt', truncation=True) | |
logits = model(input_tensor).logits | |
softmax = torch.nn.Softmax(dim=1) | |
probs = softmax(logits)[0] | |
probs = probs.cpu().detach().numpy() | |
max_index = np.argmax(probs) | |
sentiment = labels[max_index] | |
return sentiment | |
demo = gr.Interface(get_category, inputs=gr.inputs.Textbox(), | |
outputs = 'text', | |
title='Articles emotion Categorization') | |
if __name__ == '__main__': | |
demo.launch(debug=True) |