Spaces:
Runtime error
Runtime error
File size: 1,291 Bytes
3262cae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
import numpy as np
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
labels = labels = ['Comment (Expert / Leadership)', 'Personal News','Event Participation', 'Obituary', 'Award / Recognition', 'Company achievement',
'Financial Insight of stockholding', 'Job Updates', 'Philanthropy', 'Negative News', 'Achievement / Highlighting']
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_name = 'abdulmatinomotoso/finetuned-distilbert-shidhant-emotion-article-categorization'
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def get_category(text):
#text = read_in_text(file.name)
input_tensor = tokenizer.encode(text, return_tensors='pt', truncation=True)
logits = model(input_tensor).logits
softmax = torch.nn.Softmax(dim=1)
probs = softmax(logits)[0]
probs = probs.cpu().detach().numpy()
max_index = np.argmax(probs)
sentiment = labels[max_index]
return sentiment
demo = gr.Interface(get_category, inputs=gr.inputs.Textbox(),
outputs = 'text',
title='Articles emotion Categorization')
if __name__ == '__main__':
demo.launch(debug=True) |