File size: 8,345 Bytes
ec9e166
 
 
621c159
ec9e166
 
 
 
 
 
 
 
5838c96
907eaa3
26a5f45
33ace18
cbf031d
3e1c3a5
b4c87ee
22d45be
2f4d027
 
 
 
 
8e8ccf4
9c39b4d
8c29218
ec9e166
 
 
 
 
 
4ac050d
3e466e9
 
 
 
4ac050d
8c29218
ec9e166
52933e7
ec9e166
 
 
 
 
8c29218
0fc5b49
 
ec9e166
 
 
 
 
 
 
 
 
 
cbf031d
9b9d29d
 
 
 
 
 
 
 
 
 
 
4ac050d
ec9e166
cbf031d
 
 
 
ec9e166
 
 
 
cbf031d
8c29218
ec9e166
17a9626
ec9e166
 
 
7e3de88
 
 
 
ec9e166
d8dabbe
5838c96
 
7e3de88
9c39b4d
e5c0906
b0dd4a4
8f8e7b3
 
b0dd4a4
 
 
 
 
 
 
 
8f8e7b3
 
 
 
f0cd778
b0dd4a4
5b48ab1
2d3a987
 
 
 
 
989668b
2b48b3a
2d3a987
77d8622
eabd144
77d8622
 
 
 
 
 
eabd144
2d3a987
96cad08
 
 
 
 
 
 
 
 
 
 
 
0c95774
96cad08
 
ec9e166
 
33ac479
ec9e166
 
 
9ff8dae
 
ec9e166
 
7e93132
ec9e166
8c29218
ec9e166
 
 
 
 
8c29218
33ac479
7e93132
 
 
 
446feac
 
 
0c95774
03d0aa3
 
 
0c95774
8c29218
ec9e166
 
be124ff
70dfddf
ec9e166
c0361e2
ec9e166
 
 
 
 
 
 
 
 
 
 
bc361ee
 
 
ec9e166
907eaa3
ec9e166
1d9366f
a7dd90a
9f78fda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
from deep_translator import GoogleTranslator
import pandas as pd
from langchain_groq import ChatGroq
from openai import OpenAI
from langchain.chat_models import ChatOpenAI
# set this key as an environment variable
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['Key2']
os.environ["OPENAI_API_KEY"] =st.secrets['Key3']
from langchain.llms import LlamaCpp
from langchain import PromptTemplate, LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

###########################################################################################

def get_pdf_text(pdf_docs : list) -> str:
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text
#######################################################################################
def load_file(): 
    loader = TextLoader('d2.txt')
    documents = loader.load()
    return documents 
########################################################################################
def get_text_chunks(text:str) ->list:
    text_splitter = CharacterTextSplitter(
        separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


def get_vectorstore(text_chunks : list) -> FAISS:
    #model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
    model="paraphrase-distilroberta-base-v1"
    encode_kwargs = {
        "normalize_embeddings": True
    }  # set True to compute cosine similarity
    embeddings = HuggingFaceBgeEmbeddings(
        model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
    )
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore


def get_conversation_chain(vectorstore):
    n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool.
    n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
    n_ctx=2048
    callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
    # Make sure the model path is correct for your system
    llm = LlamaCpp(
    model_path="mostafaamiri/persian-llama-7b-GGUF-Q4",
    n_gpu_layers=n_gpu_layers, n_batch=n_batch,
    callback_manager=callback_manager,
    verbose=True,
    n_ctx=n_ctx)
    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory,
        # retriever_kwargs={"k": 1},
    )
    return conversation_chain



def handle_userinput(user_question:str):
    response = st.session_state.conversation({"question": user_question})
    st.session_state.chat_history = response["chat_history"]

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            text2=message.content 
            translator = GoogleTranslator(source='english', target='persian')
            result = translator.translate(text2)
            st.write("سوال کاربر: "+result)
        else:
            text1=message.content 
            translator = GoogleTranslator(source='english', target='persian')
            result = translator.translate(text1)
            st.write("پاسخ ربات: "+result)

#############################################################################################################
def read_pdf_pr_en(pdf_file_path):
  from deep_translator import GoogleTranslator
  import PyPDF2
  # مسیر فایل PDF را تعیین کنید
  #pdf_file_path = '/content/d2en.pdf'
  # باز کردن فایل PDF
  with open(pdf_file_path, 'rb') as pdf_file:
    pdf_reader = PyPDF2.PdfReader(pdf_file)
    # خواندن محتوای صفحه‌ها
    full_text = ''
    for page in pdf_reader.pages:
        page_pdf=page.extract_text()
        translator = GoogleTranslator(source='persian', target='english')
        result = translator.translate(page_pdf)
        full_text +=result
    st.write(full_text)
    return(full_text)
#################################################################################################################
def get_pdf_text(pdf_docs): 
    text = "" 
    for pdf in pdf_docs: 
        pdf_reader = PdfReader(pdf) 
    for page in pdf_reader.pages: 
        txt_page=page.extract_text() 
        text += txt_page
    return text
#######################################################################################################################
def upload_xls():
    st.title("آپلود و نمایش فایل اکسل")
    uploaded_file = st.file_uploader("لطفاً فایل اکسل خود را آپلود کنید", type=["xlsx", "xls"])
    if uploaded_file is not None:
        df = pd.read_excel(uploaded_file)
        st.write("دیتا فریم مربوط به فایل اکسل:")
        st.write(df)
    return df

################################################################################################################
def sentences_f(sentence,df2):
  words = sentence.split()
  df1 = pd.DataFrame(words, columns=['کلمات'])
  df1['معادل'] = ''
  for i, word in df1['کلمات'].items():
    match = df2[df2['کلمات'] == word]
    if not match.empty:
        df1.at[i, 'معادل'] = match['معادل'].values[0]
  df1['معادل'] = df1.apply(lambda row: row['کلمات'] if row['معادل'] == '' else row['معادل'], axis=1)
  translated_sentence = ' '.join(df1['معادل'].tolist())
  return translated_sentence
####################################################################################################################    

####################################################################################################################
def main():
    st.set_page_config(
        page_title="Chat Bot PDFs",
        page_icon=":books:",
    )

    #st.markdown("# Chat with a Bot")
    #st.markdown("This bot tries to answer questions about multiple PDFs. Let the processing of the PDF finish before adding your question. 🙏🏾")

    st.write(css, unsafe_allow_html=True)
    #df2=upload_xls()

    
    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    
    st.header("Chat Bot PDFs :books:")
    user_question = st.text_input("Ask a question about your documents:")
    #user_question2=sentences_f(sentence=user_question1,df2=df2)
    #translator = GoogleTranslator(source='persian', target='english')
    #user_question = translator.translate(user_question2)
    if st.button("Answer"):
            with st.spinner("Answering"):
              handle_userinput(user_question)
          
    if st.button("CLEAR"):
            with st.spinner("CLEARING"):
              st.cache_data.clear()
         
    
    with st.sidebar:
        st.subheader("Your documents")
        pdf_docs = st.file_uploader("Upload your PDFs here and click on 'Process'", accept_multiple_files=True)

        if st.button("Process"):
            with st.spinner("Processing"):
                # get pdf text
                raw_text = get_pdf_text(pdf_docs)

                # get the text chunks
                text_chunks = get_text_chunks(raw_text)

                # create vector store
                vectorstore = get_vectorstore(text_chunks)

                # create conversation chain
                st.session_state.conversation = get_conversation_chain(vectorstore)
                
                #compelete build model
                st.write("compelete build model")


if __name__ == "__main__":
    main()