Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,3 @@
|
|
1 |
-
"""
|
2 |
-
Question Answering with Retrieval QA and LangChain Language Models featuring FAISS vector stores.
|
3 |
-
This script uses the LangChain Language Model API to answer questions using Retrieval QA
|
4 |
-
and FAISS vector stores. It also uses the Mistral huggingface inference endpoint to
|
5 |
-
generate responses.
|
6 |
-
"""
|
7 |
-
|
8 |
import os
|
9 |
import streamlit as st
|
10 |
from dotenv import load_dotenv
|
@@ -21,21 +14,7 @@ from langchain.llms import HuggingFaceHub
|
|
21 |
# set this key as an environment variable
|
22 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
|
23 |
|
24 |
-
def get_pdf_text(pdf_docs):
|
25 |
-
"""
|
26 |
-
Extract text from a list of PDF documents.
|
27 |
-
|
28 |
-
Parameters
|
29 |
-
----------
|
30 |
-
pdf_docs : list
|
31 |
-
List of PDF documents to extract text from.
|
32 |
-
|
33 |
-
Returns
|
34 |
-
-------
|
35 |
-
str
|
36 |
-
Extracted text from all the PDF documents.
|
37 |
-
|
38 |
-
"""
|
39 |
text = ""
|
40 |
for pdf in pdf_docs:
|
41 |
pdf_reader = PdfReader(pdf)
|
@@ -44,21 +23,7 @@ def get_pdf_text(pdf_docs):
|
|
44 |
return text
|
45 |
|
46 |
|
47 |
-
def get_text_chunks(text):
|
48 |
-
"""
|
49 |
-
Split the input text into chunks.
|
50 |
-
|
51 |
-
Parameters
|
52 |
-
----------
|
53 |
-
text : str
|
54 |
-
The input text to be split.
|
55 |
-
|
56 |
-
Returns
|
57 |
-
-------
|
58 |
-
list
|
59 |
-
List of text chunks.
|
60 |
-
|
61 |
-
"""
|
62 |
text_splitter = CharacterTextSplitter(
|
63 |
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
|
64 |
)
|
@@ -66,22 +31,7 @@ def get_text_chunks(text):
|
|
66 |
return chunks
|
67 |
|
68 |
|
69 |
-
def get_vectorstore(text_chunks):
|
70 |
-
"""
|
71 |
-
Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings.
|
72 |
-
|
73 |
-
Parameters
|
74 |
-
----------
|
75 |
-
text_chunks : list
|
76 |
-
List of text chunks to be embedded.
|
77 |
-
|
78 |
-
Returns
|
79 |
-
-------
|
80 |
-
FAISS
|
81 |
-
A FAISS vector store containing the embeddings of the text chunks.
|
82 |
-
|
83 |
-
"""
|
84 |
-
#model = "BAAI/bge-base-en-v1.5"
|
85 |
model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
86 |
encode_kwargs = {
|
87 |
"normalize_embeddings": True
|
@@ -93,26 +43,13 @@ def get_vectorstore(text_chunks):
|
|
93 |
return vectorstore
|
94 |
|
95 |
|
96 |
-
def get_conversation_chain(vectorstore):
|
97 |
-
""
|
98 |
-
Create a conversational retrieval chain using a vector store and a language model.
|
99 |
-
|
100 |
-
Parameters
|
101 |
-
----------
|
102 |
-
vectorstore : FAISS
|
103 |
-
A FAISS vector store containing the embeddings of the text chunks.
|
104 |
-
|
105 |
-
Returns
|
106 |
-
-------
|
107 |
-
ConversationalRetrievalChain
|
108 |
-
A conversational retrieval chain for generating responses.
|
109 |
-
|
110 |
-
"""
|
111 |
llm = HuggingFaceHub(
|
112 |
-
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
|
|
113 |
model_kwargs={"temperature": 0.5, "max_length": 1048},
|
114 |
)
|
115 |
-
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
|
116 |
|
117 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
118 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
@@ -121,28 +58,18 @@ def get_conversation_chain(vectorstore):
|
|
121 |
return conversation_chain
|
122 |
|
123 |
|
124 |
-
def handle_userinput(user_question):
|
125 |
-
"""
|
126 |
-
Handle user input and generate a response using the conversational retrieval chain.
|
127 |
-
Parameters
|
128 |
-
----------
|
129 |
-
user_question : str
|
130 |
-
The user's question.
|
131 |
-
"""
|
132 |
response = st.session_state.conversation({"question": user_question})
|
133 |
st.session_state.chat_history = response["chat_history"]
|
134 |
|
135 |
for i, message in enumerate(st.session_state.chat_history):
|
136 |
if i % 2 == 0:
|
137 |
-
st.write("
|
138 |
else:
|
139 |
st.write("🤖 ChatBot: " + message.content)
|
140 |
|
141 |
|
142 |
def main():
|
143 |
-
"""
|
144 |
-
Putting it all together.
|
145 |
-
"""
|
146 |
st.set_page_config(
|
147 |
page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
|
148 |
page_icon=":books:",
|
@@ -153,18 +80,19 @@ def main():
|
|
153 |
|
154 |
st.write(css, unsafe_allow_html=True)
|
155 |
|
156 |
-
|
157 |
-
|
158 |
if "conversation" not in st.session_state:
|
159 |
st.session_state.conversation = None
|
160 |
if "chat_history" not in st.session_state:
|
161 |
st.session_state.chat_history = None
|
162 |
|
|
|
163 |
st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:")
|
164 |
user_question = st.text_input("Ask a question about your documents:")
|
165 |
if user_question:
|
166 |
handle_userinput(user_question)
|
167 |
|
|
|
168 |
with st.sidebar:
|
169 |
st.subheader("Your documents")
|
170 |
pdf_docs = st.file_uploader(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
from dotenv import load_dotenv
|
|
|
14 |
# set this key as an environment variable
|
15 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
|
16 |
|
17 |
+
def get_pdf_text(pdf_docs : list) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
text = ""
|
19 |
for pdf in pdf_docs:
|
20 |
pdf_reader = PdfReader(pdf)
|
|
|
23 |
return text
|
24 |
|
25 |
|
26 |
+
def get_text_chunks(text:str) ->list:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
text_splitter = CharacterTextSplitter(
|
28 |
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
|
29 |
)
|
|
|
31 |
return chunks
|
32 |
|
33 |
|
34 |
+
def get_vectorstore(text_chunks : list) -> FAISS:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
36 |
encode_kwargs = {
|
37 |
"normalize_embeddings": True
|
|
|
43 |
return vectorstore
|
44 |
|
45 |
|
46 |
+
def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
|
47 |
+
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
llm = HuggingFaceHub(
|
49 |
+
#repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
50 |
+
repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
|
51 |
model_kwargs={"temperature": 0.5, "max_length": 1048},
|
52 |
)
|
|
|
53 |
|
54 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
55 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
|
|
58 |
return conversation_chain
|
59 |
|
60 |
|
61 |
+
def handle_userinput(user_question:str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
response = st.session_state.conversation({"question": user_question})
|
63 |
st.session_state.chat_history = response["chat_history"]
|
64 |
|
65 |
for i, message in enumerate(st.session_state.chat_history):
|
66 |
if i % 2 == 0:
|
67 |
+
st.write(" Usuario: " + message.content)
|
68 |
else:
|
69 |
st.write("🤖 ChatBot: " + message.content)
|
70 |
|
71 |
|
72 |
def main():
|
|
|
|
|
|
|
73 |
st.set_page_config(
|
74 |
page_title="Chat with a Bot that tries to answer questions about multiple PDFs",
|
75 |
page_icon=":books:",
|
|
|
80 |
|
81 |
st.write(css, unsafe_allow_html=True)
|
82 |
|
83 |
+
|
|
|
84 |
if "conversation" not in st.session_state:
|
85 |
st.session_state.conversation = None
|
86 |
if "chat_history" not in st.session_state:
|
87 |
st.session_state.chat_history = None
|
88 |
|
89 |
+
|
90 |
st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:")
|
91 |
user_question = st.text_input("Ask a question about your documents:")
|
92 |
if user_question:
|
93 |
handle_userinput(user_question)
|
94 |
|
95 |
+
|
96 |
with st.sidebar:
|
97 |
st.subheader("Your documents")
|
98 |
pdf_docs = st.file_uploader(
|