alfredplpl's picture
Update app.py
8b530ad verified
# Ref: https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b
import spaces
import gradio as gr
import os
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import torch
HF_TOKEN=os.environ["TOKEN"]
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">้žๅ…ฌๅผGemma-2-2b-jpn-it</h1>
<p>Gemma-2-2b-jpn-itใฎ้žๅ…ฌๅผใƒ‡ใƒขใ ใ‚ˆใ€‚ <a href="https://huggingface.co/google/gemma-2-2b-jpn-it"><b>google/gemma-2-2b-jpn-it</b></a>.</p>
</div>
'''
LICENSE = """
<p/>
---
Gemma
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Gemma-2-2b-jpn-it</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">ใชใ‚“ใงใ‚‚ใใ„ใฆใญ</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-jpn-it",token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-2b-jpn-it",
device_map="auto",
torch_dtype=torch.bfloat16,
token=HF_TOKEN
)
@spaces.GPU()
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True,return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=0.95,
repetition_penalty=1.1
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="โš™๏ธ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.7,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False ),
],
examples=[
['ๅฐๅญฆ็”Ÿใซใ‚‚ใ‚ใ‹ใ‚‹ใ‚ˆใ†ใซ็›ธๅฏพๆ€ง็†่ซ–ใ‚’ๆ•™ใˆใฆใใ ใ•ใ„ใ€‚'],
['ๅฎ‡ๅฎ™ใฎ่ตทๆบใ‚’็Ÿฅใ‚‹ใŸใ‚ใฎๆ–นๆณ•ใ‚’ใ‚นใƒ†ใƒƒใƒ—ใƒปใƒใ‚คใƒปใ‚นใƒ†ใƒƒใƒ—ใงๆ•™ใˆใฆใใ ใ•ใ„ใ€‚'],
['1ใ‹ใ‚‰100ใพใงใฎ็ด ๆ•ฐใ‚’ๆฑ‚ใ‚ใ‚‹ใ‚นใ‚ฏใƒชใƒ—ใƒˆใ‚’Pythonใงๆ›ธใ„ใฆใใ ใ•ใ„ใ€‚'],
['ๅ‹้”ใฎ้™ฝ่‘ตใซใ‚ใ’ใ‚‹่ช•็”Ÿๆ—ฅใƒ—ใƒฌใ‚ผใƒณใƒˆใ‚’่€ƒใˆใฆใใ ใ•ใ„ใ€‚ใŸใ ใ—ใ€้™ฝ่‘ตใฏไธญๅญฆ็”Ÿใงใ€็งใฏๅŒใ˜ใ‚ฏใƒฉใ‚นใฎ็”ทๆ€งใงใ‚ใ‚‹ใ“ใจใ‚’่€ƒๆ…ฎใ—ใฆใใ ใ•ใ„ใ€‚'],
['ใƒšใƒณใ‚ฎใƒณใŒใ‚ธใƒฃใƒณใ‚ฐใƒซใฎ็Ž‹ๆง˜ใงใ‚ใ‚‹ใ“ใจใ‚’ๆญฃๅฝ“ๅŒ–ใ™ใ‚‹ใ‚ˆใ†ใซ่ชฌๆ˜Žใ—ใฆใใ ใ•ใ„ใ€‚']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()