File size: 4,861 Bytes
7c1afaf
 
 
 
 
 
 
 
 
 
87eb439
fa661af
7c1afaf
 
8b530ad
31b9227
7c1afaf
 
 
 
 
 
 
31b9227
7c1afaf
 
 
 
31b9227
7c1afaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87eb439
0ee3851
 
 
 
87eb439
0ee3851
7c1afaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Ref: https://huggingface.co/spaces/ysharma/Chat_with_Meta_llama3_8b

import spaces
import gradio as gr
import os
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import torch

HF_TOKEN=os.environ["TOKEN"]

DESCRIPTION = '''
<div>
<h1 style="text-align: center;">้žๅ…ฌๅผGemma-2-2b-jpn-it</h1>
<p>Gemma-2-2b-jpn-itใฎ้žๅ…ฌๅผใƒ‡ใƒขใ ใ‚ˆใ€‚ <a href="https://huggingface.co/google/gemma-2-2b-jpn-it"><b>google/gemma-2-2b-jpn-it</b></a>.</p>
</div>
'''

LICENSE = """
<p/>

---
Gemma
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Gemma-2-2b-jpn-it</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">ใชใ‚“ใงใ‚‚ใใ„ใฆใญ</p>
</div>
"""


css = """
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-jpn-it",token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
    "google/gemma-2-2b-jpn-it",
    device_map="auto",
    torch_dtype=torch.bfloat16,
    token=HF_TOKEN
)

@spaces.GPU()
def chat_llama3_8b(message: str, 
              history: list, 
              temperature: float, 
              max_new_tokens: int
             ) -> str:
    """
    Generate a streaming response using the llama3-8b model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    conversation = []
    for user, assistant in history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True,return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=0.95,
        repetition_penalty=1.1
    )
    
    # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.             
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        print(outputs)
        yield "".join(outputs)
        

# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="โš™๏ธ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0,
                      maximum=1, 
                      step=0.1,
                      value=0.7, 
                      label="Temperature", 
                      render=False),
            gr.Slider(minimum=128, 
                      maximum=4096,
                      step=1,
                      value=1024, 
                      label="Max new tokens", 
                      render=False ),
            ],
        examples=[
            ['ๅฐๅญฆ็”Ÿใซใ‚‚ใ‚ใ‹ใ‚‹ใ‚ˆใ†ใซ็›ธๅฏพๆ€ง็†่ซ–ใ‚’ๆ•™ใˆใฆใใ ใ•ใ„ใ€‚'],
            ['ๅฎ‡ๅฎ™ใฎ่ตทๆบใ‚’็Ÿฅใ‚‹ใŸใ‚ใฎๆ–นๆณ•ใ‚’ใ‚นใƒ†ใƒƒใƒ—ใƒปใƒใ‚คใƒปใ‚นใƒ†ใƒƒใƒ—ใงๆ•™ใˆใฆใใ ใ•ใ„ใ€‚'],
            ['1ใ‹ใ‚‰100ใพใงใฎ็ด ๆ•ฐใ‚’ๆฑ‚ใ‚ใ‚‹ใ‚นใ‚ฏใƒชใƒ—ใƒˆใ‚’Pythonใงๆ›ธใ„ใฆใใ ใ•ใ„ใ€‚'],
            ['ๅ‹้”ใฎ้™ฝ่‘ตใซใ‚ใ’ใ‚‹่ช•็”Ÿๆ—ฅใƒ—ใƒฌใ‚ผใƒณใƒˆใ‚’่€ƒใˆใฆใใ ใ•ใ„ใ€‚ใŸใ ใ—ใ€้™ฝ่‘ตใฏไธญๅญฆ็”Ÿใงใ€็งใฏๅŒใ˜ใ‚ฏใƒฉใ‚นใฎ็”ทๆ€งใงใ‚ใ‚‹ใ“ใจใ‚’่€ƒๆ…ฎใ—ใฆใใ ใ•ใ„ใ€‚'],
            ['ใƒšใƒณใ‚ฎใƒณใŒใ‚ธใƒฃใƒณใ‚ฐใƒซใฎ็Ž‹ๆง˜ใงใ‚ใ‚‹ใ“ใจใ‚’ๆญฃๅฝ“ๅŒ–ใ™ใ‚‹ใ‚ˆใ†ใซ่ชฌๆ˜Žใ—ใฆใใ ใ•ใ„ใ€‚']
            ],
        cache_examples=False,
                     )
    
    gr.Markdown(LICENSE)
    
if __name__ == "__main__":
    demo.launch()