File size: 2,087 Bytes
7efd637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import gradio as gr
from together import Together
import base64

# Initialize the Together client
client = Together(api_key=os.environ.get('TOGETHER_API_KEY'))

def process_image(image):
    # Convert the image to base64
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode()
    
    # Prepare the messages for the API call
    messages = [
        {"role": "system", "content": "You are an AI assistant that can analyze images and generate code based on their content."},
        {"role": "user", "content": [
            {"type": "image_url", "image_url": f"data:image/png;base64,{img_str}"},
            {"type": "text", "text": "Analyze this image and generate Python code that could recreate or represent the main elements seen in the image."}
        ]}
    ]
    
    # Make the API call
    response = client.chat.completions.create(
        model="meta-llama/Llama-Vision-Free",
        messages=messages,
        max_tokens=512,
        temperature=0.7,
        top_p=0.7,
        top_k=50,
        repetition_penalty=1,
        stop=["<|eot_id|>", "<|eom_id|>"]
    )
    
    # Extract the generated code from the response
    generated_code = response.choices[0].message.content
    
    # Generate HTML to display the code with syntax highlighting
    html_output = f"""
    <pre><code class="language-python">{generated_code}</code></pre>
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.7.0/styles/default.min.css">
    <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.7.0/highlight.min.js"></script>
    <script>hljs.highlightAll();</script>
    """
    
    return html_output

# Create the Gradio interface
iface = gr.Interface(
    fn=process_image,
    inputs=gr.Image(type="pil"),
    outputs=gr.HTML(),
    title="Llama Vision Free Code Generation",
    description="Upload an image, and this demo will use the Llama Vision Free model to analyze it and generate relevant Python code."
)

# Launch the interface
iface.launch()