Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from together import Together
|
4 |
+
import base64
|
5 |
+
|
6 |
+
# Initialize the Together client
|
7 |
+
client = Together(api_key=os.environ.get('TOGETHER_API_KEY'))
|
8 |
+
|
9 |
+
def process_image(image):
|
10 |
+
# Convert the image to base64
|
11 |
+
buffered = BytesIO()
|
12 |
+
image.save(buffered, format="PNG")
|
13 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
14 |
+
|
15 |
+
# Prepare the messages for the API call
|
16 |
+
messages = [
|
17 |
+
{"role": "system", "content": "You are an AI assistant that can analyze images and generate code based on their content."},
|
18 |
+
{"role": "user", "content": [
|
19 |
+
{"type": "image_url", "image_url": f"data:image/png;base64,{img_str}"},
|
20 |
+
{"type": "text", "text": "Analyze this image and generate Python code that could recreate or represent the main elements seen in the image."}
|
21 |
+
]}
|
22 |
+
]
|
23 |
+
|
24 |
+
# Make the API call
|
25 |
+
response = client.chat.completions.create(
|
26 |
+
model="meta-llama/Llama-Vision-Free",
|
27 |
+
messages=messages,
|
28 |
+
max_tokens=512,
|
29 |
+
temperature=0.7,
|
30 |
+
top_p=0.7,
|
31 |
+
top_k=50,
|
32 |
+
repetition_penalty=1,
|
33 |
+
stop=["<|eot_id|>", "<|eom_id|>"]
|
34 |
+
)
|
35 |
+
|
36 |
+
# Extract the generated code from the response
|
37 |
+
generated_code = response.choices[0].message.content
|
38 |
+
|
39 |
+
# Generate HTML to display the code with syntax highlighting
|
40 |
+
html_output = f"""
|
41 |
+
<pre><code class="language-python">{generated_code}</code></pre>
|
42 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.7.0/styles/default.min.css">
|
43 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.7.0/highlight.min.js"></script>
|
44 |
+
<script>hljs.highlightAll();</script>
|
45 |
+
"""
|
46 |
+
|
47 |
+
return html_output
|
48 |
+
|
49 |
+
# Create the Gradio interface
|
50 |
+
iface = gr.Interface(
|
51 |
+
fn=process_image,
|
52 |
+
inputs=gr.Image(type="pil"),
|
53 |
+
outputs=gr.HTML(),
|
54 |
+
title="Llama Vision Free Code Generation",
|
55 |
+
description="Upload an image, and this demo will use the Llama Vision Free model to analyze it and generate relevant Python code."
|
56 |
+
)
|
57 |
+
|
58 |
+
# Launch the interface
|
59 |
+
iface.launch()
|