|
import gc |
|
import json |
|
import os |
|
import platform |
|
import psutil |
|
import random |
|
import signal |
|
import shutil |
|
import subprocess |
|
import sys |
|
import tempfile |
|
import time |
|
from glob import glob |
|
|
|
import click |
|
import gradio as gr |
|
import librosa |
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
from datasets import Dataset as Dataset_ |
|
from datasets.arrow_writer import ArrowWriter |
|
from safetensors.torch import save_file |
|
from scipy.io import wavfile |
|
from transformers import pipeline |
|
|
|
from f5_tts.api import F5TTS |
|
from f5_tts.model.utils import convert_char_to_pinyin |
|
|
|
|
|
training_process = None |
|
system = platform.system() |
|
python_executable = sys.executable or "python" |
|
tts_api = None |
|
last_checkpoint = "" |
|
last_device = "" |
|
|
|
path_data = "data" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" |
|
|
|
pipe = None |
|
|
|
|
|
|
|
def get_audio_duration(audio_path): |
|
"""Calculate the duration of an audio file.""" |
|
audio, sample_rate = torchaudio.load(audio_path) |
|
num_channels = audio.shape[0] |
|
return audio.shape[1] / (sample_rate * num_channels) |
|
|
|
|
|
def clear_text(text): |
|
"""Clean and prepare text by lowering the case and stripping whitespace.""" |
|
return text.lower().strip() |
|
|
|
|
|
def get_rms( |
|
y, |
|
frame_length=2048, |
|
hop_length=512, |
|
pad_mode="constant", |
|
): |
|
padding = (int(frame_length // 2), int(frame_length // 2)) |
|
y = np.pad(y, padding, mode=pad_mode) |
|
|
|
axis = -1 |
|
|
|
out_strides = y.strides + tuple([y.strides[axis]]) |
|
|
|
x_shape_trimmed = list(y.shape) |
|
x_shape_trimmed[axis] -= frame_length - 1 |
|
out_shape = tuple(x_shape_trimmed) + tuple([frame_length]) |
|
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides) |
|
if axis < 0: |
|
target_axis = axis - 1 |
|
else: |
|
target_axis = axis + 1 |
|
xw = np.moveaxis(xw, -1, target_axis) |
|
|
|
slices = [slice(None)] * xw.ndim |
|
slices[axis] = slice(0, None, hop_length) |
|
x = xw[tuple(slices)] |
|
|
|
|
|
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True) |
|
|
|
return np.sqrt(power) |
|
|
|
|
|
class Slicer: |
|
def __init__( |
|
self, |
|
sr: int, |
|
threshold: float = -40.0, |
|
min_length: int = 2000, |
|
min_interval: int = 300, |
|
hop_size: int = 20, |
|
max_sil_kept: int = 2000, |
|
): |
|
if not min_length >= min_interval >= hop_size: |
|
raise ValueError("The following condition must be satisfied: min_length >= min_interval >= hop_size") |
|
if not max_sil_kept >= hop_size: |
|
raise ValueError("The following condition must be satisfied: max_sil_kept >= hop_size") |
|
min_interval = sr * min_interval / 1000 |
|
self.threshold = 10 ** (threshold / 20.0) |
|
self.hop_size = round(sr * hop_size / 1000) |
|
self.win_size = min(round(min_interval), 4 * self.hop_size) |
|
self.min_length = round(sr * min_length / 1000 / self.hop_size) |
|
self.min_interval = round(min_interval / self.hop_size) |
|
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size) |
|
|
|
def _apply_slice(self, waveform, begin, end): |
|
if len(waveform.shape) > 1: |
|
return waveform[:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)] |
|
else: |
|
return waveform[begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)] |
|
|
|
|
|
def slice(self, waveform): |
|
if len(waveform.shape) > 1: |
|
samples = waveform.mean(axis=0) |
|
else: |
|
samples = waveform |
|
if samples.shape[0] <= self.min_length: |
|
return [waveform] |
|
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0) |
|
sil_tags = [] |
|
silence_start = None |
|
clip_start = 0 |
|
for i, rms in enumerate(rms_list): |
|
|
|
if rms < self.threshold: |
|
|
|
if silence_start is None: |
|
silence_start = i |
|
continue |
|
|
|
if silence_start is None: |
|
continue |
|
|
|
is_leading_silence = silence_start == 0 and i > self.max_sil_kept |
|
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length |
|
if not is_leading_silence and not need_slice_middle: |
|
silence_start = None |
|
continue |
|
|
|
if i - silence_start <= self.max_sil_kept: |
|
pos = rms_list[silence_start : i + 1].argmin() + silence_start |
|
if silence_start == 0: |
|
sil_tags.append((0, pos)) |
|
else: |
|
sil_tags.append((pos, pos)) |
|
clip_start = pos |
|
elif i - silence_start <= self.max_sil_kept * 2: |
|
pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin() |
|
pos += i - self.max_sil_kept |
|
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start |
|
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept |
|
if silence_start == 0: |
|
sil_tags.append((0, pos_r)) |
|
clip_start = pos_r |
|
else: |
|
sil_tags.append((min(pos_l, pos), max(pos_r, pos))) |
|
clip_start = max(pos_r, pos) |
|
else: |
|
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start |
|
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept |
|
if silence_start == 0: |
|
sil_tags.append((0, pos_r)) |
|
else: |
|
sil_tags.append((pos_l, pos_r)) |
|
clip_start = pos_r |
|
silence_start = None |
|
|
|
total_frames = rms_list.shape[0] |
|
if silence_start is not None and total_frames - silence_start >= self.min_interval: |
|
silence_end = min(total_frames, silence_start + self.max_sil_kept) |
|
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start |
|
sil_tags.append((pos, total_frames + 1)) |
|
|
|
|
|
if len(sil_tags) == 0: |
|
return [[waveform, 0, int(total_frames * self.hop_size)]] |
|
else: |
|
chunks = [] |
|
if sil_tags[0][0] > 0: |
|
chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]), 0, int(sil_tags[0][0] * self.hop_size)]) |
|
for i in range(len(sil_tags) - 1): |
|
chunks.append( |
|
[ |
|
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]), |
|
int(sil_tags[i][1] * self.hop_size), |
|
int(sil_tags[i + 1][0] * self.hop_size), |
|
] |
|
) |
|
if sil_tags[-1][1] < total_frames: |
|
chunks.append( |
|
[ |
|
self._apply_slice(waveform, sil_tags[-1][1], total_frames), |
|
int(sil_tags[-1][1] * self.hop_size), |
|
int(total_frames * self.hop_size), |
|
] |
|
) |
|
return chunks |
|
|
|
|
|
|
|
def terminate_process_tree(pid, including_parent=True): |
|
try: |
|
parent = psutil.Process(pid) |
|
except psutil.NoSuchProcess: |
|
|
|
return |
|
|
|
children = parent.children(recursive=True) |
|
for child in children: |
|
try: |
|
os.kill(child.pid, signal.SIGTERM) |
|
except OSError: |
|
pass |
|
if including_parent: |
|
try: |
|
os.kill(parent.pid, signal.SIGTERM) |
|
except OSError: |
|
pass |
|
|
|
|
|
def terminate_process(pid): |
|
if system == "Windows": |
|
cmd = f"taskkill /t /f /pid {pid}" |
|
os.system(cmd) |
|
else: |
|
terminate_process_tree(pid) |
|
|
|
|
|
def start_training( |
|
dataset_name="", |
|
exp_name="F5TTS_Base", |
|
learning_rate=1e-4, |
|
batch_size_per_gpu=400, |
|
batch_size_type="frame", |
|
max_samples=64, |
|
grad_accumulation_steps=1, |
|
max_grad_norm=1.0, |
|
epochs=11, |
|
num_warmup_updates=200, |
|
save_per_updates=400, |
|
last_per_steps=800, |
|
finetune=True, |
|
file_checkpoint_train="", |
|
tokenizer_type="pinyin", |
|
tokenizer_file="", |
|
mixed_precision="fp16", |
|
): |
|
global training_process, tts_api |
|
|
|
if tts_api is not None: |
|
del tts_api |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
tts_api = None |
|
|
|
path_project = os.path.join(path_data, dataset_name) |
|
|
|
if not os.path.isdir(path_project): |
|
yield ( |
|
f"There is not project with name {dataset_name}", |
|
gr.update(interactive=True), |
|
gr.update(interactive=False), |
|
) |
|
return |
|
|
|
file_raw = os.path.join(path_project, "raw.arrow") |
|
if not os.path.isfile(file_raw): |
|
yield f"There is no file {file_raw}", gr.update(interactive=True), gr.update(interactive=False) |
|
return |
|
|
|
|
|
if training_process is not None: |
|
return "Train run already!", gr.update(interactive=False), gr.update(interactive=True) |
|
|
|
yield "start train", gr.update(interactive=False), gr.update(interactive=False) |
|
|
|
|
|
|
|
if tokenizer_file == "": |
|
if dataset_name.endswith("_pinyin"): |
|
tokenizer_type = "pinyin" |
|
elif dataset_name.endswith("_char"): |
|
tokenizer_type = "char" |
|
else: |
|
tokenizer_file = "custom" |
|
|
|
dataset_name = dataset_name.replace("_pinyin", "").replace("_char", "") |
|
|
|
if mixed_precision != "none": |
|
fp16 = f"--mixed_precision={mixed_precision}" |
|
else: |
|
fp16 = "" |
|
|
|
cmd = ( |
|
f"accelerate launch {fp16} finetune-cli.py --exp_name {exp_name} " |
|
f"--learning_rate {learning_rate} " |
|
f"--batch_size_per_gpu {batch_size_per_gpu} " |
|
f"--batch_size_type {batch_size_type} " |
|
f"--max_samples {max_samples} " |
|
f"--grad_accumulation_steps {grad_accumulation_steps} " |
|
f"--max_grad_norm {max_grad_norm} " |
|
f"--epochs {epochs} " |
|
f"--num_warmup_updates {num_warmup_updates} " |
|
f"--save_per_updates {save_per_updates} " |
|
f"--last_per_steps {last_per_steps} " |
|
f"--dataset_name {dataset_name}" |
|
) |
|
if finetune: |
|
cmd += f" --finetune {finetune}" |
|
|
|
if file_checkpoint_train != "": |
|
cmd += f" --file_checkpoint_train {file_checkpoint_train}" |
|
|
|
if tokenizer_file != "": |
|
cmd += f" --tokenizer_path {tokenizer_file}" |
|
|
|
cmd += f" --tokenizer {tokenizer_type} " |
|
|
|
print(cmd) |
|
|
|
try: |
|
|
|
training_process = subprocess.Popen(cmd, shell=True) |
|
|
|
time.sleep(5) |
|
yield "train start", gr.update(interactive=False), gr.update(interactive=True) |
|
|
|
|
|
training_process.wait() |
|
time.sleep(1) |
|
|
|
if training_process is None: |
|
text_info = "train stop" |
|
else: |
|
text_info = "train complete !" |
|
|
|
except Exception as e: |
|
|
|
text_info = f"An error occurred: {str(e)}" |
|
|
|
training_process = None |
|
|
|
yield text_info, gr.update(interactive=True), gr.update(interactive=False) |
|
|
|
|
|
def stop_training(): |
|
global training_process |
|
if training_process is None: |
|
return "Train not run !", gr.update(interactive=True), gr.update(interactive=False) |
|
terminate_process_tree(training_process.pid) |
|
training_process = None |
|
return "train stop", gr.update(interactive=True), gr.update(interactive=False) |
|
|
|
|
|
def get_list_projects(): |
|
project_list = [] |
|
for folder in os.listdir("data"): |
|
path_folder = os.path.join("data", folder) |
|
if not os.path.isdir(path_folder): |
|
continue |
|
folder = folder.lower() |
|
if folder == "emilia_zh_en_pinyin": |
|
continue |
|
project_list.append(folder) |
|
|
|
projects_selelect = None if not project_list else project_list[-1] |
|
|
|
return project_list, projects_selelect |
|
|
|
|
|
def create_data_project(name, tokenizer_type): |
|
name += "_" + tokenizer_type |
|
os.makedirs(os.path.join(path_data, name), exist_ok=True) |
|
os.makedirs(os.path.join(path_data, name, "dataset"), exist_ok=True) |
|
project_list, projects_selelect = get_list_projects() |
|
return gr.update(choices=project_list, value=name) |
|
|
|
|
|
def transcribe(file_audio, language="english"): |
|
global pipe |
|
|
|
if pipe is None: |
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model="openai/whisper-large-v3-turbo", |
|
torch_dtype=torch.float16, |
|
device=device, |
|
) |
|
|
|
text_transcribe = pipe( |
|
file_audio, |
|
chunk_length_s=30, |
|
batch_size=128, |
|
generate_kwargs={"task": "transcribe", "language": language}, |
|
return_timestamps=False, |
|
)["text"].strip() |
|
return text_transcribe |
|
|
|
|
|
def transcribe_all(name_project, audio_files, language, user=False, progress=gr.Progress()): |
|
path_project = os.path.join(path_data, name_project) |
|
path_dataset = os.path.join(path_project, "dataset") |
|
path_project_wavs = os.path.join(path_project, "wavs") |
|
file_metadata = os.path.join(path_project, "metadata.csv") |
|
|
|
if not user: |
|
if audio_files is None: |
|
return "You need to load an audio file." |
|
|
|
if os.path.isdir(path_project_wavs): |
|
shutil.rmtree(path_project_wavs) |
|
|
|
if os.path.isfile(file_metadata): |
|
os.remove(file_metadata) |
|
|
|
os.makedirs(path_project_wavs, exist_ok=True) |
|
|
|
if user: |
|
file_audios = [ |
|
file |
|
for format in ("*.wav", "*.ogg", "*.opus", "*.mp3", "*.flac") |
|
for file in glob(os.path.join(path_dataset, format)) |
|
] |
|
if file_audios == []: |
|
return "No audio file was found in the dataset." |
|
else: |
|
file_audios = audio_files |
|
|
|
alpha = 0.5 |
|
_max = 1.0 |
|
slicer = Slicer(24000) |
|
|
|
num = 0 |
|
error_num = 0 |
|
data = "" |
|
for file_audio in progress.tqdm(file_audios, desc="transcribe files", total=len((file_audios))): |
|
audio, _ = librosa.load(file_audio, sr=24000, mono=True) |
|
|
|
list_slicer = slicer.slice(audio) |
|
for chunk, start, end in progress.tqdm(list_slicer, total=len(list_slicer), desc="slicer files"): |
|
name_segment = os.path.join(f"segment_{num}") |
|
file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav") |
|
|
|
tmp_max = np.abs(chunk).max() |
|
if tmp_max > 1: |
|
chunk /= tmp_max |
|
chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk |
|
wavfile.write(file_segment, 24000, (chunk * 32767).astype(np.int16)) |
|
|
|
try: |
|
text = transcribe(file_segment, language) |
|
text = text.lower().strip().replace('"', "") |
|
|
|
data += f"{name_segment}|{text}\n" |
|
|
|
num += 1 |
|
except: |
|
error_num += 1 |
|
|
|
with open(file_metadata, "w", encoding="utf-8-sig") as f: |
|
f.write(data) |
|
|
|
if error_num != []: |
|
error_text = f"\nerror files : {error_num}" |
|
else: |
|
error_text = "" |
|
|
|
return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}" |
|
|
|
|
|
def format_seconds_to_hms(seconds): |
|
hours = int(seconds / 3600) |
|
minutes = int((seconds % 3600) / 60) |
|
seconds = seconds % 60 |
|
return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds)) |
|
|
|
|
|
def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()): |
|
path_project = os.path.join(path_data, name_project) |
|
path_project_wavs = os.path.join(path_project, "wavs") |
|
file_metadata = os.path.join(path_project, "metadata.csv") |
|
file_raw = os.path.join(path_project, "raw.arrow") |
|
file_duration = os.path.join(path_project, "duration.json") |
|
file_vocab = os.path.join(path_project, "vocab.txt") |
|
|
|
if not os.path.isfile(file_metadata): |
|
return "The file was not found in " + file_metadata, "" |
|
|
|
with open(file_metadata, "r", encoding="utf-8-sig") as f: |
|
data = f.read() |
|
|
|
audio_path_list = [] |
|
text_list = [] |
|
duration_list = [] |
|
|
|
count = data.split("\n") |
|
lenght = 0 |
|
result = [] |
|
error_files = [] |
|
text_vocab_set = set() |
|
for line in progress.tqdm(data.split("\n"), total=count): |
|
sp_line = line.split("|") |
|
if len(sp_line) != 2: |
|
continue |
|
name_audio, text = sp_line[:2] |
|
|
|
file_audio = os.path.join(path_project_wavs, name_audio + ".wav") |
|
|
|
if not os.path.isfile(file_audio): |
|
error_files.append([file_audio, "error path"]) |
|
continue |
|
|
|
try: |
|
duration = get_audio_duration(file_audio) |
|
except Exception as e: |
|
error_files.append([file_audio, "duration"]) |
|
print(f"Error processing {file_audio}: {e}") |
|
continue |
|
|
|
if duration < 1 and duration > 25: |
|
error_files.append([file_audio, "duration < 1 and > 25 "]) |
|
continue |
|
if len(text) < 4: |
|
error_files.append([file_audio, "very small text len 3"]) |
|
continue |
|
|
|
text = clear_text(text) |
|
text = convert_char_to_pinyin([text], polyphone=True)[0] |
|
|
|
audio_path_list.append(file_audio) |
|
duration_list.append(duration) |
|
text_list.append(text) |
|
|
|
result.append({"audio_path": file_audio, "text": text, "duration": duration}) |
|
if ch_tokenizer: |
|
text_vocab_set.update(list(text)) |
|
|
|
lenght += duration |
|
|
|
if duration_list == []: |
|
return f"Error: No audio files found in the specified path : {path_project_wavs}", "" |
|
|
|
min_second = round(min(duration_list), 2) |
|
max_second = round(max(duration_list), 2) |
|
|
|
with ArrowWriter(path=file_raw, writer_batch_size=1) as writer: |
|
for line in progress.tqdm(result, total=len(result), desc="prepare data"): |
|
writer.write(line) |
|
|
|
with open(file_duration, "w") as f: |
|
json.dump({"duration": duration_list}, f, ensure_ascii=False) |
|
|
|
new_vocal = "" |
|
if not ch_tokenizer: |
|
file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt" |
|
if not os.path.isfile(file_vocab_finetune): |
|
return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!" |
|
shutil.copy2(file_vocab_finetune, file_vocab) |
|
|
|
with open(file_vocab, "r", encoding="utf-8-sig") as f: |
|
vocab_char_map = {} |
|
for i, char in enumerate(f): |
|
vocab_char_map[char[:-1]] = i |
|
vocab_size = len(vocab_char_map) |
|
|
|
else: |
|
with open(file_vocab, "w", encoding="utf-8-sig") as f: |
|
for vocab in sorted(text_vocab_set): |
|
f.write(vocab + "\n") |
|
new_vocal += vocab + "\n" |
|
vocab_size = len(text_vocab_set) |
|
|
|
if error_files != []: |
|
error_text = "\n".join([" = ".join(item) for item in error_files]) |
|
else: |
|
error_text = "" |
|
|
|
return ( |
|
f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\nvocab : {vocab_size}\n{error_text}", |
|
new_vocal, |
|
) |
|
|
|
|
|
def check_user(value): |
|
return gr.update(visible=not value), gr.update(visible=value) |
|
|
|
|
|
def calculate_train( |
|
name_project, |
|
batch_size_type, |
|
max_samples, |
|
learning_rate, |
|
num_warmup_updates, |
|
save_per_updates, |
|
last_per_steps, |
|
finetune, |
|
): |
|
path_project = os.path.join(path_data, name_project) |
|
file_duraction = os.path.join(path_project, "duration.json") |
|
|
|
if not os.path.isfile(file_duraction): |
|
return ( |
|
1000, |
|
max_samples, |
|
num_warmup_updates, |
|
save_per_updates, |
|
last_per_steps, |
|
"project not found !", |
|
learning_rate, |
|
) |
|
|
|
with open(file_duraction, "r") as file: |
|
data = json.load(file) |
|
|
|
duration_list = data["duration"] |
|
samples = len(duration_list) |
|
hours = sum(duration_list) / 3600 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
gpu_count = torch.cuda.device_count() |
|
total_memory = 0 |
|
for i in range(gpu_count): |
|
gpu_properties = torch.cuda.get_device_properties(i) |
|
total_memory += gpu_properties.total_memory / (1024**3) |
|
|
|
elif torch.backends.mps.is_available(): |
|
gpu_count = 1 |
|
total_memory = psutil.virtual_memory().available / (1024**3) |
|
|
|
if batch_size_type == "frame": |
|
batch = int(total_memory * 0.5) |
|
batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch) |
|
batch_size_per_gpu = int(38400 / batch) |
|
else: |
|
batch_size_per_gpu = int(total_memory / 8) |
|
batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu) |
|
batch = batch_size_per_gpu |
|
|
|
if batch_size_per_gpu <= 0: |
|
batch_size_per_gpu = 1 |
|
|
|
if samples < 64: |
|
max_samples = int(samples * 0.25) |
|
else: |
|
max_samples = 64 |
|
|
|
num_warmup_updates = int(samples * 0.05) |
|
save_per_updates = int(samples * 0.10) |
|
last_per_steps = int(save_per_updates * 5) |
|
|
|
max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples) |
|
num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates) |
|
save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates) |
|
last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps) |
|
|
|
total_hours = hours |
|
mel_hop_length = 256 |
|
mel_sampling_rate = 24000 |
|
|
|
|
|
wanted_max_updates = 1000000 |
|
|
|
|
|
gpus = gpu_count |
|
frames_per_gpu = batch_size_per_gpu |
|
grad_accum = 1 |
|
|
|
|
|
mini_batch_frames = frames_per_gpu * grad_accum * gpus |
|
mini_batch_hours = mini_batch_frames * mel_hop_length / mel_sampling_rate / 3600 |
|
updates_per_epoch = total_hours / mini_batch_hours |
|
|
|
epochs = wanted_max_updates / updates_per_epoch |
|
|
|
if finetune: |
|
learning_rate = 1e-5 |
|
else: |
|
learning_rate = 7.5e-5 |
|
|
|
return ( |
|
batch_size_per_gpu, |
|
max_samples, |
|
num_warmup_updates, |
|
save_per_updates, |
|
last_per_steps, |
|
samples, |
|
learning_rate, |
|
int(epochs), |
|
) |
|
|
|
|
|
def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str, safetensors: bool) -> str: |
|
try: |
|
checkpoint = torch.load(checkpoint_path) |
|
print("Original Checkpoint Keys:", checkpoint.keys()) |
|
|
|
ema_model_state_dict = checkpoint.get("ema_model_state_dict", None) |
|
if ema_model_state_dict is None: |
|
return "No 'ema_model_state_dict' found in the checkpoint." |
|
|
|
if safetensors: |
|
new_checkpoint_path = new_checkpoint_path.replace(".pt", ".safetensors") |
|
save_file(ema_model_state_dict, new_checkpoint_path) |
|
else: |
|
new_checkpoint_path = new_checkpoint_path.replace(".safetensors", ".pt") |
|
new_checkpoint = {"ema_model_state_dict": ema_model_state_dict} |
|
torch.save(new_checkpoint, new_checkpoint_path) |
|
|
|
return f"New checkpoint saved at: {new_checkpoint_path}" |
|
|
|
except Exception as e: |
|
return f"An error occurred: {e}" |
|
|
|
|
|
def vocab_check(project_name): |
|
name_project = project_name |
|
path_project = os.path.join(path_data, name_project) |
|
|
|
file_metadata = os.path.join(path_project, "metadata.csv") |
|
|
|
file_vocab = "data/Emilia_ZH_EN_pinyin/vocab.txt" |
|
if not os.path.isfile(file_vocab): |
|
return f"the file {file_vocab} not found !" |
|
|
|
with open(file_vocab, "r", encoding="utf-8-sig") as f: |
|
data = f.read() |
|
vocab = data.split("\n") |
|
vocab = set(vocab) |
|
|
|
if not os.path.isfile(file_metadata): |
|
return f"the file {file_metadata} not found !" |
|
|
|
with open(file_metadata, "r", encoding="utf-8-sig") as f: |
|
data = f.read() |
|
|
|
miss_symbols = [] |
|
miss_symbols_keep = {} |
|
for item in data.split("\n"): |
|
sp = item.split("|") |
|
if len(sp) != 2: |
|
continue |
|
|
|
text = sp[1].lower().strip() |
|
|
|
for t in text: |
|
if t not in vocab and t not in miss_symbols_keep: |
|
miss_symbols.append(t) |
|
miss_symbols_keep[t] = t |
|
if miss_symbols == []: |
|
info = "You can train using your language !" |
|
else: |
|
info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols) |
|
|
|
return info |
|
|
|
|
|
def get_random_sample_prepare(project_name): |
|
name_project = project_name |
|
path_project = os.path.join(path_data, name_project) |
|
file_arrow = os.path.join(path_project, "raw.arrow") |
|
if not os.path.isfile(file_arrow): |
|
return "", None |
|
dataset = Dataset_.from_file(file_arrow) |
|
random_sample = dataset.shuffle(seed=random.randint(0, 1000)).select([0]) |
|
text = "[" + " , ".join(["' " + t + " '" for t in random_sample["text"][0]]) + "]" |
|
audio_path = random_sample["audio_path"][0] |
|
return text, audio_path |
|
|
|
|
|
def get_random_sample_transcribe(project_name): |
|
name_project = project_name |
|
path_project = os.path.join(path_data, name_project) |
|
file_metadata = os.path.join(path_project, "metadata.csv") |
|
if not os.path.isfile(file_metadata): |
|
return "", None |
|
|
|
data = "" |
|
with open(file_metadata, "r", encoding="utf-8-sig") as f: |
|
data = f.read() |
|
|
|
list_data = [] |
|
for item in data.split("\n"): |
|
sp = item.split("|") |
|
if len(sp) != 2: |
|
continue |
|
list_data.append([os.path.join(path_project, "wavs", sp[0] + ".wav"), sp[1]]) |
|
|
|
if list_data == []: |
|
return "", None |
|
|
|
random_item = random.choice(list_data) |
|
|
|
return random_item[1], random_item[0] |
|
|
|
|
|
def get_random_sample_infer(project_name): |
|
text, audio = get_random_sample_transcribe(project_name) |
|
return ( |
|
text, |
|
text, |
|
audio, |
|
) |
|
|
|
|
|
def infer(file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step): |
|
global last_checkpoint, last_device, tts_api |
|
|
|
if not os.path.isfile(file_checkpoint): |
|
return None, "checkpoint not found!" |
|
|
|
if training_process is not None: |
|
device_test = "cpu" |
|
else: |
|
device_test = None |
|
|
|
if last_checkpoint != file_checkpoint or last_device != device_test: |
|
if last_checkpoint != file_checkpoint: |
|
last_checkpoint = file_checkpoint |
|
if last_device != device_test: |
|
last_device = device_test |
|
|
|
tts_api = F5TTS(model_type=exp_name, ckpt_file=file_checkpoint, device=device_test) |
|
|
|
print("update", device_test, file_checkpoint) |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: |
|
tts_api.infer(gen_text=gen_text, ref_text=ref_text, ref_file=ref_audio, nfe_step=nfe_step, file_wave=f.name) |
|
return f.name, tts_api.device |
|
|
|
|
|
def check_finetune(finetune): |
|
return gr.update(interactive=finetune), gr.update(interactive=finetune), gr.update(interactive=finetune) |
|
|
|
|
|
def get_checkpoints_project(project_name, is_gradio=True): |
|
if project_name is None: |
|
return [], "" |
|
project_name = project_name.replace("_pinyin", "").replace("_char", "") |
|
path_project_ckpts = os.path.join("ckpts", project_name) |
|
|
|
if os.path.isdir(path_project_ckpts): |
|
files_checkpoints = glob(os.path.join(path_project_ckpts, "*.pt")) |
|
files_checkpoints = sorted( |
|
files_checkpoints, |
|
key=lambda x: int(os.path.basename(x).split("_")[1].split(".")[0]) |
|
if os.path.basename(x) != "model_last.pt" |
|
else float("inf"), |
|
) |
|
else: |
|
files_checkpoints = [] |
|
|
|
selelect_checkpoint = None if not files_checkpoints else files_checkpoints[0] |
|
|
|
if is_gradio: |
|
return gr.update(choices=files_checkpoints, value=selelect_checkpoint) |
|
|
|
return files_checkpoints, selelect_checkpoint |
|
|
|
|
|
def get_gpu_stats(): |
|
gpu_stats = "" |
|
|
|
if torch.cuda.is_available(): |
|
gpu_count = torch.cuda.device_count() |
|
for i in range(gpu_count): |
|
gpu_name = torch.cuda.get_device_name(i) |
|
gpu_properties = torch.cuda.get_device_properties(i) |
|
total_memory = gpu_properties.total_memory / (1024**3) |
|
allocated_memory = torch.cuda.memory_allocated(i) / (1024**2) |
|
reserved_memory = torch.cuda.memory_reserved(i) / (1024**2) |
|
|
|
gpu_stats += ( |
|
f"GPU {i} Name: {gpu_name}\n" |
|
f"Total GPU memory (GPU {i}): {total_memory:.2f} GB\n" |
|
f"Allocated GPU memory (GPU {i}): {allocated_memory:.2f} MB\n" |
|
f"Reserved GPU memory (GPU {i}): {reserved_memory:.2f} MB\n\n" |
|
) |
|
|
|
elif torch.backends.mps.is_available(): |
|
gpu_count = 1 |
|
gpu_stats += "MPS GPU\n" |
|
total_memory = psutil.virtual_memory().total / ( |
|
1024**3 |
|
) |
|
allocated_memory = 0 |
|
reserved_memory = 0 |
|
|
|
gpu_stats += ( |
|
f"Total system memory: {total_memory:.2f} GB\n" |
|
f"Allocated GPU memory (MPS): {allocated_memory:.2f} MB\n" |
|
f"Reserved GPU memory (MPS): {reserved_memory:.2f} MB\n" |
|
) |
|
|
|
else: |
|
gpu_stats = "No GPU available" |
|
|
|
return gpu_stats |
|
|
|
|
|
def get_cpu_stats(): |
|
cpu_usage = psutil.cpu_percent(interval=1) |
|
memory_info = psutil.virtual_memory() |
|
memory_used = memory_info.used / (1024**2) |
|
memory_total = memory_info.total / (1024**2) |
|
memory_percent = memory_info.percent |
|
|
|
pid = os.getpid() |
|
process = psutil.Process(pid) |
|
nice_value = process.nice() |
|
|
|
cpu_stats = ( |
|
f"CPU Usage: {cpu_usage:.2f}%\n" |
|
f"System Memory: {memory_used:.2f} MB used / {memory_total:.2f} MB total ({memory_percent}% used)\n" |
|
f"Process Priority (Nice value): {nice_value}" |
|
) |
|
|
|
return cpu_stats |
|
|
|
|
|
def get_combined_stats(): |
|
gpu_stats = get_gpu_stats() |
|
cpu_stats = get_cpu_stats() |
|
combined_stats = f"### GPU Stats\n{gpu_stats}\n\n### CPU Stats\n{cpu_stats}" |
|
return combined_stats |
|
|
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown( |
|
""" |
|
# E2/F5 TTS AUTOMATIC FINETUNE |
|
|
|
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models: |
|
|
|
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching) |
|
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS) |
|
|
|
The checkpoints support English and Chinese. |
|
|
|
for tutorial and updates check here (https://github.com/SWivid/F5-TTS/discussions/143) |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
projects, projects_selelect = get_list_projects() |
|
tokenizer_type = gr.Radio(label="Tokenizer Type", choices=["pinyin", "char"], value="pinyin") |
|
project_name = gr.Textbox(label="project name", value="my_speak") |
|
bt_create = gr.Button("create new project") |
|
|
|
cm_project = gr.Dropdown(choices=projects, value=projects_selelect, label="Project", allow_custom_value=True) |
|
|
|
bt_create.click(fn=create_data_project, inputs=[project_name, tokenizer_type], outputs=[cm_project]) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("transcribe Data"): |
|
ch_manual = gr.Checkbox(label="audio from path", value=False) |
|
|
|
mark_info_transcribe = gr.Markdown( |
|
"""```plaintext |
|
Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory. |
|
|
|
my_speak/ |
|
│ |
|
└── dataset/ |
|
├── audio1.wav |
|
└── audio2.wav |
|
... |
|
```""", |
|
visible=False, |
|
) |
|
|
|
audio_speaker = gr.File(label="voice", type="filepath", file_count="multiple") |
|
txt_lang = gr.Text(label="Language", value="english") |
|
bt_transcribe = bt_create = gr.Button("transcribe") |
|
txt_info_transcribe = gr.Text(label="info", value="") |
|
bt_transcribe.click( |
|
fn=transcribe_all, |
|
inputs=[cm_project, audio_speaker, txt_lang, ch_manual], |
|
outputs=[txt_info_transcribe], |
|
) |
|
ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe]) |
|
|
|
random_sample_transcribe = gr.Button("random sample") |
|
|
|
with gr.Row(): |
|
random_text_transcribe = gr.Text(label="Text") |
|
random_audio_transcribe = gr.Audio(label="Audio", type="filepath") |
|
|
|
random_sample_transcribe.click( |
|
fn=get_random_sample_transcribe, |
|
inputs=[cm_project], |
|
outputs=[random_text_transcribe, random_audio_transcribe], |
|
) |
|
|
|
with gr.TabItem("prepare Data"): |
|
gr.Markdown( |
|
"""```plaintext |
|
place all your wavs folder and your metadata.csv file in {your name project} |
|
my_speak/ |
|
│ |
|
├── wavs/ |
|
│ ├── audio1.wav |
|
│ └── audio2.wav |
|
| ... |
|
│ |
|
└── metadata.csv |
|
|
|
file format metadata.csv |
|
|
|
audio1|text1 |
|
audio2|text1 |
|
... |
|
|
|
```""" |
|
) |
|
ch_tokenizern = gr.Checkbox(label="create vocabulary from dataset", value=False) |
|
bt_prepare = bt_create = gr.Button("prepare") |
|
txt_info_prepare = gr.Text(label="info", value="") |
|
txt_vocab_prepare = gr.Text(label="vocab", value="") |
|
bt_prepare.click( |
|
fn=create_metadata, inputs=[cm_project, ch_tokenizern], outputs=[txt_info_prepare, txt_vocab_prepare] |
|
) |
|
|
|
random_sample_prepare = gr.Button("random sample") |
|
|
|
with gr.Row(): |
|
random_text_prepare = gr.Text(label="Pinyin") |
|
random_audio_prepare = gr.Audio(label="Audio", type="filepath") |
|
|
|
random_sample_prepare.click( |
|
fn=get_random_sample_prepare, inputs=[cm_project], outputs=[random_text_prepare, random_audio_prepare] |
|
) |
|
|
|
with gr.TabItem("train Data"): |
|
with gr.Row(): |
|
bt_calculate = bt_create = gr.Button("Auto Settings") |
|
lb_samples = gr.Label(label="samples") |
|
batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame") |
|
|
|
with gr.Row(): |
|
ch_finetune = bt_create = gr.Checkbox(label="finetune", value=True) |
|
tokenizer_file = gr.Textbox(label="Tokenizer File", value="") |
|
file_checkpoint_train = gr.Textbox(label="Pretrain Model", value="") |
|
|
|
with gr.Row(): |
|
exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base") |
|
learning_rate = gr.Number(label="Learning Rate", value=1e-5, step=1e-5) |
|
|
|
with gr.Row(): |
|
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000) |
|
max_samples = gr.Number(label="Max Samples", value=64) |
|
|
|
with gr.Row(): |
|
grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1) |
|
max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0) |
|
|
|
with gr.Row(): |
|
epochs = gr.Number(label="Epochs", value=10) |
|
num_warmup_updates = gr.Number(label="Warmup Updates", value=5) |
|
|
|
with gr.Row(): |
|
save_per_updates = gr.Number(label="Save per Updates", value=10) |
|
last_per_steps = gr.Number(label="Last per Steps", value=50) |
|
|
|
with gr.Row(): |
|
mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "fpb16"], value="none") |
|
start_button = gr.Button("Start Training") |
|
stop_button = gr.Button("Stop Training", interactive=False) |
|
|
|
txt_info_train = gr.Text(label="info", value="") |
|
start_button.click( |
|
fn=start_training, |
|
inputs=[ |
|
cm_project, |
|
exp_name, |
|
learning_rate, |
|
batch_size_per_gpu, |
|
batch_size_type, |
|
max_samples, |
|
grad_accumulation_steps, |
|
max_grad_norm, |
|
epochs, |
|
num_warmup_updates, |
|
save_per_updates, |
|
last_per_steps, |
|
ch_finetune, |
|
file_checkpoint_train, |
|
tokenizer_type, |
|
tokenizer_file, |
|
mixed_precision, |
|
], |
|
outputs=[txt_info_train, start_button, stop_button], |
|
) |
|
stop_button.click(fn=stop_training, outputs=[txt_info_train, start_button, stop_button]) |
|
|
|
bt_calculate.click( |
|
fn=calculate_train, |
|
inputs=[ |
|
cm_project, |
|
batch_size_type, |
|
max_samples, |
|
learning_rate, |
|
num_warmup_updates, |
|
save_per_updates, |
|
last_per_steps, |
|
ch_finetune, |
|
], |
|
outputs=[ |
|
batch_size_per_gpu, |
|
max_samples, |
|
num_warmup_updates, |
|
save_per_updates, |
|
last_per_steps, |
|
lb_samples, |
|
learning_rate, |
|
epochs, |
|
], |
|
) |
|
|
|
ch_finetune.change( |
|
check_finetune, inputs=[ch_finetune], outputs=[file_checkpoint_train, tokenizer_file, tokenizer_type] |
|
) |
|
|
|
with gr.TabItem("reduse checkpoint"): |
|
txt_path_checkpoint = gr.Text(label="path checkpoint :") |
|
txt_path_checkpoint_small = gr.Text(label="path output :") |
|
ch_safetensors = gr.Checkbox(label="safetensors", value="") |
|
txt_info_reduse = gr.Text(label="info", value="") |
|
reduse_button = gr.Button("reduse") |
|
reduse_button.click( |
|
fn=extract_and_save_ema_model, |
|
inputs=[txt_path_checkpoint, txt_path_checkpoint_small, ch_safetensors], |
|
outputs=[txt_info_reduse], |
|
) |
|
|
|
with gr.TabItem("vocab check"): |
|
check_button = gr.Button("check vocab") |
|
txt_info_check = gr.Text(label="info", value="") |
|
check_button.click(fn=vocab_check, inputs=[cm_project], outputs=[txt_info_check]) |
|
|
|
with gr.TabItem("test model"): |
|
exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS") |
|
list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False) |
|
|
|
nfe_step = gr.Number(label="n_step", value=32) |
|
|
|
with gr.Row(): |
|
cm_checkpoint = gr.Dropdown( |
|
choices=list_checkpoints, value=checkpoint_select, label="checkpoints", allow_custom_value=True |
|
) |
|
bt_checkpoint_refresh = gr.Button("refresh") |
|
|
|
random_sample_infer = gr.Button("random sample") |
|
|
|
ref_text = gr.Textbox(label="ref text") |
|
ref_audio = gr.Audio(label="audio ref", type="filepath") |
|
gen_text = gr.Textbox(label="gen text") |
|
random_sample_infer.click( |
|
fn=get_random_sample_infer, inputs=[cm_project], outputs=[ref_text, gen_text, ref_audio] |
|
) |
|
|
|
with gr.Row(): |
|
txt_info_gpu = gr.Textbox("", label="device") |
|
check_button_infer = gr.Button("infer") |
|
|
|
gen_audio = gr.Audio(label="audio gen", type="filepath") |
|
|
|
check_button_infer.click( |
|
fn=infer, |
|
inputs=[cm_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step], |
|
outputs=[gen_audio, txt_info_gpu], |
|
) |
|
|
|
bt_checkpoint_refresh.click(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint]) |
|
cm_project.change(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint]) |
|
|
|
with gr.TabItem("system info"): |
|
output_box = gr.Textbox(label="GPU and CPU Information", lines=20) |
|
|
|
def update_stats(): |
|
return get_combined_stats() |
|
|
|
update_button = gr.Button("Update Stats") |
|
update_button.click(fn=update_stats, outputs=output_box) |
|
|
|
def auto_update(): |
|
yield gr.update(value=update_stats()) |
|
|
|
gr.update(fn=auto_update, inputs=[], outputs=output_box) |
|
|
|
|
|
@click.command() |
|
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on") |
|
@click.option("--host", "-H", default=None, help="Host to run the app on") |
|
@click.option( |
|
"--share", |
|
"-s", |
|
default=False, |
|
is_flag=True, |
|
help="Share the app via Gradio share link", |
|
) |
|
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access") |
|
def main(port, host, share, api): |
|
global app |
|
print("Starting app...") |
|
app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|