File size: 42,677 Bytes
4dab15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
import gc
import json
import os
import platform
import psutil
import random
import signal
import shutil
import subprocess
import sys
import tempfile
import time
from glob import glob

import click
import gradio as gr
import librosa
import numpy as np
import torch
import torchaudio
from datasets import Dataset as Dataset_
from datasets.arrow_writer import ArrowWriter
from safetensors.torch import save_file
from scipy.io import wavfile
from transformers import pipeline

from f5_tts.api import F5TTS
from f5_tts.model.utils import convert_char_to_pinyin


training_process = None
system = platform.system()
python_executable = sys.executable or "python"
tts_api = None
last_checkpoint = ""
last_device = ""

path_data = "data"

device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"

pipe = None


# Load metadata
def get_audio_duration(audio_path):
    """Calculate the duration of an audio file."""
    audio, sample_rate = torchaudio.load(audio_path)
    num_channels = audio.shape[0]
    return audio.shape[1] / (sample_rate * num_channels)


def clear_text(text):
    """Clean and prepare text by lowering the case and stripping whitespace."""
    return text.lower().strip()


def get_rms(
    y,
    frame_length=2048,
    hop_length=512,
    pad_mode="constant",
):  # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
    padding = (int(frame_length // 2), int(frame_length // 2))
    y = np.pad(y, padding, mode=pad_mode)

    axis = -1
    # put our new within-frame axis at the end for now
    out_strides = y.strides + tuple([y.strides[axis]])
    # Reduce the shape on the framing axis
    x_shape_trimmed = list(y.shape)
    x_shape_trimmed[axis] -= frame_length - 1
    out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
    xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
    if axis < 0:
        target_axis = axis - 1
    else:
        target_axis = axis + 1
    xw = np.moveaxis(xw, -1, target_axis)
    # Downsample along the target axis
    slices = [slice(None)] * xw.ndim
    slices[axis] = slice(0, None, hop_length)
    x = xw[tuple(slices)]

    # Calculate power
    power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)

    return np.sqrt(power)


class Slicer:  # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
    def __init__(
        self,
        sr: int,
        threshold: float = -40.0,
        min_length: int = 2000,
        min_interval: int = 300,
        hop_size: int = 20,
        max_sil_kept: int = 2000,
    ):
        if not min_length >= min_interval >= hop_size:
            raise ValueError("The following condition must be satisfied: min_length >= min_interval >= hop_size")
        if not max_sil_kept >= hop_size:
            raise ValueError("The following condition must be satisfied: max_sil_kept >= hop_size")
        min_interval = sr * min_interval / 1000
        self.threshold = 10 ** (threshold / 20.0)
        self.hop_size = round(sr * hop_size / 1000)
        self.win_size = min(round(min_interval), 4 * self.hop_size)
        self.min_length = round(sr * min_length / 1000 / self.hop_size)
        self.min_interval = round(min_interval / self.hop_size)
        self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)

    def _apply_slice(self, waveform, begin, end):
        if len(waveform.shape) > 1:
            return waveform[:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)]
        else:
            return waveform[begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)]

    # @timeit
    def slice(self, waveform):
        if len(waveform.shape) > 1:
            samples = waveform.mean(axis=0)
        else:
            samples = waveform
        if samples.shape[0] <= self.min_length:
            return [waveform]
        rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
        sil_tags = []
        silence_start = None
        clip_start = 0
        for i, rms in enumerate(rms_list):
            # Keep looping while frame is silent.
            if rms < self.threshold:
                # Record start of silent frames.
                if silence_start is None:
                    silence_start = i
                continue
            # Keep looping while frame is not silent and silence start has not been recorded.
            if silence_start is None:
                continue
            # Clear recorded silence start if interval is not enough or clip is too short
            is_leading_silence = silence_start == 0 and i > self.max_sil_kept
            need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
            if not is_leading_silence and not need_slice_middle:
                silence_start = None
                continue
            # Need slicing. Record the range of silent frames to be removed.
            if i - silence_start <= self.max_sil_kept:
                pos = rms_list[silence_start : i + 1].argmin() + silence_start
                if silence_start == 0:
                    sil_tags.append((0, pos))
                else:
                    sil_tags.append((pos, pos))
                clip_start = pos
            elif i - silence_start <= self.max_sil_kept * 2:
                pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
                pos += i - self.max_sil_kept
                pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
                pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                    clip_start = pos_r
                else:
                    sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
                    clip_start = max(pos_r, pos)
            else:
                pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
                pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
                if silence_start == 0:
                    sil_tags.append((0, pos_r))
                else:
                    sil_tags.append((pos_l, pos_r))
                clip_start = pos_r
            silence_start = None
        # Deal with trailing silence.
        total_frames = rms_list.shape[0]
        if silence_start is not None and total_frames - silence_start >= self.min_interval:
            silence_end = min(total_frames, silence_start + self.max_sil_kept)
            pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
            sil_tags.append((pos, total_frames + 1))
        # Apply and return slices.
        ####ιŸ³ι’‘+衷始既间+η»ˆζ­’ζ—Άι—΄
        if len(sil_tags) == 0:
            return [[waveform, 0, int(total_frames * self.hop_size)]]
        else:
            chunks = []
            if sil_tags[0][0] > 0:
                chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]), 0, int(sil_tags[0][0] * self.hop_size)])
            for i in range(len(sil_tags) - 1):
                chunks.append(
                    [
                        self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),
                        int(sil_tags[i][1] * self.hop_size),
                        int(sil_tags[i + 1][0] * self.hop_size),
                    ]
                )
            if sil_tags[-1][1] < total_frames:
                chunks.append(
                    [
                        self._apply_slice(waveform, sil_tags[-1][1], total_frames),
                        int(sil_tags[-1][1] * self.hop_size),
                        int(total_frames * self.hop_size),
                    ]
                )
            return chunks


# terminal
def terminate_process_tree(pid, including_parent=True):
    try:
        parent = psutil.Process(pid)
    except psutil.NoSuchProcess:
        # Process already terminated
        return

    children = parent.children(recursive=True)
    for child in children:
        try:
            os.kill(child.pid, signal.SIGTERM)  # or signal.SIGKILL
        except OSError:
            pass
    if including_parent:
        try:
            os.kill(parent.pid, signal.SIGTERM)  # or signal.SIGKILL
        except OSError:
            pass


def terminate_process(pid):
    if system == "Windows":
        cmd = f"taskkill /t /f /pid {pid}"
        os.system(cmd)
    else:
        terminate_process_tree(pid)


def start_training(
    dataset_name="",
    exp_name="F5TTS_Base",
    learning_rate=1e-4,
    batch_size_per_gpu=400,
    batch_size_type="frame",
    max_samples=64,
    grad_accumulation_steps=1,
    max_grad_norm=1.0,
    epochs=11,
    num_warmup_updates=200,
    save_per_updates=400,
    last_per_steps=800,
    finetune=True,
    file_checkpoint_train="",
    tokenizer_type="pinyin",
    tokenizer_file="",
    mixed_precision="fp16",
):
    global training_process, tts_api

    if tts_api is not None:
        del tts_api
        gc.collect()
        torch.cuda.empty_cache()
        tts_api = None

    path_project = os.path.join(path_data, dataset_name)

    if not os.path.isdir(path_project):
        yield (
            f"There is not project with name {dataset_name}",
            gr.update(interactive=True),
            gr.update(interactive=False),
        )
        return

    file_raw = os.path.join(path_project, "raw.arrow")
    if not os.path.isfile(file_raw):
        yield f"There is no file {file_raw}", gr.update(interactive=True), gr.update(interactive=False)
        return

    # Check if a training process is already running
    if training_process is not None:
        return "Train run already!", gr.update(interactive=False), gr.update(interactive=True)

    yield "start train", gr.update(interactive=False), gr.update(interactive=False)

    # Command to run the training script with the specified arguments

    if tokenizer_file == "":
        if dataset_name.endswith("_pinyin"):
            tokenizer_type = "pinyin"
        elif dataset_name.endswith("_char"):
            tokenizer_type = "char"
    else:
        tokenizer_file = "custom"

    dataset_name = dataset_name.replace("_pinyin", "").replace("_char", "")

    if mixed_precision != "none":
        fp16 = f"--mixed_precision={mixed_precision}"
    else:
        fp16 = ""

    cmd = (
        f"accelerate launch {fp16} finetune-cli.py --exp_name {exp_name} "
        f"--learning_rate {learning_rate} "
        f"--batch_size_per_gpu {batch_size_per_gpu} "
        f"--batch_size_type {batch_size_type} "
        f"--max_samples {max_samples} "
        f"--grad_accumulation_steps {grad_accumulation_steps} "
        f"--max_grad_norm {max_grad_norm} "
        f"--epochs {epochs} "
        f"--num_warmup_updates {num_warmup_updates} "
        f"--save_per_updates {save_per_updates} "
        f"--last_per_steps {last_per_steps} "
        f"--dataset_name {dataset_name}"
    )
    if finetune:
        cmd += f" --finetune {finetune}"

    if file_checkpoint_train != "":
        cmd += f" --file_checkpoint_train {file_checkpoint_train}"

    if tokenizer_file != "":
        cmd += f" --tokenizer_path {tokenizer_file}"

    cmd += f" --tokenizer {tokenizer_type} "

    print(cmd)

    try:
        # Start the training process
        training_process = subprocess.Popen(cmd, shell=True)

        time.sleep(5)
        yield "train start", gr.update(interactive=False), gr.update(interactive=True)

        # Wait for the training process to finish
        training_process.wait()
        time.sleep(1)

        if training_process is None:
            text_info = "train stop"
        else:
            text_info = "train complete !"

    except Exception as e:  # Catch all exceptions
        # Ensure that we reset the training process variable in case of an error
        text_info = f"An error occurred: {str(e)}"

    training_process = None

    yield text_info, gr.update(interactive=True), gr.update(interactive=False)


def stop_training():
    global training_process
    if training_process is None:
        return "Train not run !", gr.update(interactive=True), gr.update(interactive=False)
    terminate_process_tree(training_process.pid)
    training_process = None
    return "train stop", gr.update(interactive=True), gr.update(interactive=False)


def get_list_projects():
    project_list = []
    for folder in os.listdir("data"):
        path_folder = os.path.join("data", folder)
        if not os.path.isdir(path_folder):
            continue
        folder = folder.lower()
        if folder == "emilia_zh_en_pinyin":
            continue
        project_list.append(folder)

    projects_selelect = None if not project_list else project_list[-1]

    return project_list, projects_selelect


def create_data_project(name, tokenizer_type):
    name += "_" + tokenizer_type
    os.makedirs(os.path.join(path_data, name), exist_ok=True)
    os.makedirs(os.path.join(path_data, name, "dataset"), exist_ok=True)
    project_list, projects_selelect = get_list_projects()
    return gr.update(choices=project_list, value=name)


def transcribe(file_audio, language="english"):
    global pipe

    if pipe is None:
        pipe = pipeline(
            "automatic-speech-recognition",
            model="openai/whisper-large-v3-turbo",
            torch_dtype=torch.float16,
            device=device,
        )

    text_transcribe = pipe(
        file_audio,
        chunk_length_s=30,
        batch_size=128,
        generate_kwargs={"task": "transcribe", "language": language},
        return_timestamps=False,
    )["text"].strip()
    return text_transcribe


def transcribe_all(name_project, audio_files, language, user=False, progress=gr.Progress()):
    path_project = os.path.join(path_data, name_project)
    path_dataset = os.path.join(path_project, "dataset")
    path_project_wavs = os.path.join(path_project, "wavs")
    file_metadata = os.path.join(path_project, "metadata.csv")

    if not user:
        if audio_files is None:
            return "You need to load an audio file."

    if os.path.isdir(path_project_wavs):
        shutil.rmtree(path_project_wavs)

    if os.path.isfile(file_metadata):
        os.remove(file_metadata)

    os.makedirs(path_project_wavs, exist_ok=True)

    if user:
        file_audios = [
            file
            for format in ("*.wav", "*.ogg", "*.opus", "*.mp3", "*.flac")
            for file in glob(os.path.join(path_dataset, format))
        ]
        if file_audios == []:
            return "No audio file was found in the dataset."
    else:
        file_audios = audio_files

    alpha = 0.5
    _max = 1.0
    slicer = Slicer(24000)

    num = 0
    error_num = 0
    data = ""
    for file_audio in progress.tqdm(file_audios, desc="transcribe files", total=len((file_audios))):
        audio, _ = librosa.load(file_audio, sr=24000, mono=True)

        list_slicer = slicer.slice(audio)
        for chunk, start, end in progress.tqdm(list_slicer, total=len(list_slicer), desc="slicer files"):
            name_segment = os.path.join(f"segment_{num}")
            file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav")

            tmp_max = np.abs(chunk).max()
            if tmp_max > 1:
                chunk /= tmp_max
            chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
            wavfile.write(file_segment, 24000, (chunk * 32767).astype(np.int16))

            try:
                text = transcribe(file_segment, language)
                text = text.lower().strip().replace('"', "")

                data += f"{name_segment}|{text}\n"

                num += 1
            except:  # noqa: E722
                error_num += 1

    with open(file_metadata, "w", encoding="utf-8-sig") as f:
        f.write(data)

    if error_num != []:
        error_text = f"\nerror files : {error_num}"
    else:
        error_text = ""

    return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}"


def format_seconds_to_hms(seconds):
    hours = int(seconds / 3600)
    minutes = int((seconds % 3600) / 60)
    seconds = seconds % 60
    return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds))


def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()):
    path_project = os.path.join(path_data, name_project)
    path_project_wavs = os.path.join(path_project, "wavs")
    file_metadata = os.path.join(path_project, "metadata.csv")
    file_raw = os.path.join(path_project, "raw.arrow")
    file_duration = os.path.join(path_project, "duration.json")
    file_vocab = os.path.join(path_project, "vocab.txt")

    if not os.path.isfile(file_metadata):
        return "The file was not found in " + file_metadata, ""

    with open(file_metadata, "r", encoding="utf-8-sig") as f:
        data = f.read()

    audio_path_list = []
    text_list = []
    duration_list = []

    count = data.split("\n")
    lenght = 0
    result = []
    error_files = []
    text_vocab_set = set()
    for line in progress.tqdm(data.split("\n"), total=count):
        sp_line = line.split("|")
        if len(sp_line) != 2:
            continue
        name_audio, text = sp_line[:2]

        file_audio = os.path.join(path_project_wavs, name_audio + ".wav")

        if not os.path.isfile(file_audio):
            error_files.append([file_audio, "error path"])
            continue

        try:
            duration = get_audio_duration(file_audio)
        except Exception as e:
            error_files.append([file_audio, "duration"])
            print(f"Error processing {file_audio}: {e}")
            continue

        if duration < 1 and duration > 25:
            error_files.append([file_audio, "duration < 1 and > 25 "])
            continue
        if len(text) < 4:
            error_files.append([file_audio, "very small text len 3"])
            continue

        text = clear_text(text)
        text = convert_char_to_pinyin([text], polyphone=True)[0]

        audio_path_list.append(file_audio)
        duration_list.append(duration)
        text_list.append(text)

        result.append({"audio_path": file_audio, "text": text, "duration": duration})
        if ch_tokenizer:
            text_vocab_set.update(list(text))

        lenght += duration

    if duration_list == []:
        return f"Error: No audio files found in the specified path : {path_project_wavs}", ""

    min_second = round(min(duration_list), 2)
    max_second = round(max(duration_list), 2)

    with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
        for line in progress.tqdm(result, total=len(result), desc="prepare data"):
            writer.write(line)

    with open(file_duration, "w") as f:
        json.dump({"duration": duration_list}, f, ensure_ascii=False)

    new_vocal = ""
    if not ch_tokenizer:
        file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt"
        if not os.path.isfile(file_vocab_finetune):
            return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!"
        shutil.copy2(file_vocab_finetune, file_vocab)

        with open(file_vocab, "r", encoding="utf-8-sig") as f:
            vocab_char_map = {}
            for i, char in enumerate(f):
                vocab_char_map[char[:-1]] = i
        vocab_size = len(vocab_char_map)

    else:
        with open(file_vocab, "w", encoding="utf-8-sig") as f:
            for vocab in sorted(text_vocab_set):
                f.write(vocab + "\n")
                new_vocal += vocab + "\n"
        vocab_size = len(text_vocab_set)

    if error_files != []:
        error_text = "\n".join([" = ".join(item) for item in error_files])
    else:
        error_text = ""

    return (
        f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\nvocab : {vocab_size}\n{error_text}",
        new_vocal,
    )


def check_user(value):
    return gr.update(visible=not value), gr.update(visible=value)


def calculate_train(
    name_project,
    batch_size_type,
    max_samples,
    learning_rate,
    num_warmup_updates,
    save_per_updates,
    last_per_steps,
    finetune,
):
    path_project = os.path.join(path_data, name_project)
    file_duraction = os.path.join(path_project, "duration.json")

    if not os.path.isfile(file_duraction):
        return (
            1000,
            max_samples,
            num_warmup_updates,
            save_per_updates,
            last_per_steps,
            "project not found !",
            learning_rate,
        )

    with open(file_duraction, "r") as file:
        data = json.load(file)

    duration_list = data["duration"]
    samples = len(duration_list)
    hours = sum(duration_list) / 3600

    # if torch.cuda.is_available():
    # gpu_properties = torch.cuda.get_device_properties(0)
    # total_memory = gpu_properties.total_memory / (1024**3)
    # elif torch.backends.mps.is_available():
    # total_memory = psutil.virtual_memory().available / (1024**3)

    if torch.cuda.is_available():
        gpu_count = torch.cuda.device_count()
        total_memory = 0
        for i in range(gpu_count):
            gpu_properties = torch.cuda.get_device_properties(i)
            total_memory += gpu_properties.total_memory / (1024**3)  # in GB

    elif torch.backends.mps.is_available():
        gpu_count = 1
        total_memory = psutil.virtual_memory().available / (1024**3)

    if batch_size_type == "frame":
        batch = int(total_memory * 0.5)
        batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch)
        batch_size_per_gpu = int(38400 / batch)
    else:
        batch_size_per_gpu = int(total_memory / 8)
        batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu)
        batch = batch_size_per_gpu

    if batch_size_per_gpu <= 0:
        batch_size_per_gpu = 1

    if samples < 64:
        max_samples = int(samples * 0.25)
    else:
        max_samples = 64

    num_warmup_updates = int(samples * 0.05)
    save_per_updates = int(samples * 0.10)
    last_per_steps = int(save_per_updates * 5)

    max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples)
    num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates)
    save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates)
    last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps)

    total_hours = hours
    mel_hop_length = 256
    mel_sampling_rate = 24000

    # target
    wanted_max_updates = 1000000

    # train params
    gpus = gpu_count
    frames_per_gpu = batch_size_per_gpu  # 8 * 38400 = 307200
    grad_accum = 1

    # intermediate
    mini_batch_frames = frames_per_gpu * grad_accum * gpus
    mini_batch_hours = mini_batch_frames * mel_hop_length / mel_sampling_rate / 3600
    updates_per_epoch = total_hours / mini_batch_hours
    # steps_per_epoch = updates_per_epoch * grad_accum
    epochs = wanted_max_updates / updates_per_epoch

    if finetune:
        learning_rate = 1e-5
    else:
        learning_rate = 7.5e-5

    return (
        batch_size_per_gpu,
        max_samples,
        num_warmup_updates,
        save_per_updates,
        last_per_steps,
        samples,
        learning_rate,
        int(epochs),
    )


def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str, safetensors: bool) -> str:
    try:
        checkpoint = torch.load(checkpoint_path)
        print("Original Checkpoint Keys:", checkpoint.keys())

        ema_model_state_dict = checkpoint.get("ema_model_state_dict", None)
        if ema_model_state_dict is None:
            return "No 'ema_model_state_dict' found in the checkpoint."

        if safetensors:
            new_checkpoint_path = new_checkpoint_path.replace(".pt", ".safetensors")
            save_file(ema_model_state_dict, new_checkpoint_path)
        else:
            new_checkpoint_path = new_checkpoint_path.replace(".safetensors", ".pt")
            new_checkpoint = {"ema_model_state_dict": ema_model_state_dict}
            torch.save(new_checkpoint, new_checkpoint_path)

        return f"New checkpoint saved at: {new_checkpoint_path}"

    except Exception as e:
        return f"An error occurred: {e}"


def vocab_check(project_name):
    name_project = project_name
    path_project = os.path.join(path_data, name_project)

    file_metadata = os.path.join(path_project, "metadata.csv")

    file_vocab = "data/Emilia_ZH_EN_pinyin/vocab.txt"
    if not os.path.isfile(file_vocab):
        return f"the file {file_vocab} not found !"

    with open(file_vocab, "r", encoding="utf-8-sig") as f:
        data = f.read()
        vocab = data.split("\n")
        vocab = set(vocab)

    if not os.path.isfile(file_metadata):
        return f"the file {file_metadata} not found !"

    with open(file_metadata, "r", encoding="utf-8-sig") as f:
        data = f.read()

    miss_symbols = []
    miss_symbols_keep = {}
    for item in data.split("\n"):
        sp = item.split("|")
        if len(sp) != 2:
            continue

        text = sp[1].lower().strip()

        for t in text:
            if t not in vocab and t not in miss_symbols_keep:
                miss_symbols.append(t)
                miss_symbols_keep[t] = t
    if miss_symbols == []:
        info = "You can train using your language !"
    else:
        info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols)

    return info


def get_random_sample_prepare(project_name):
    name_project = project_name
    path_project = os.path.join(path_data, name_project)
    file_arrow = os.path.join(path_project, "raw.arrow")
    if not os.path.isfile(file_arrow):
        return "", None
    dataset = Dataset_.from_file(file_arrow)
    random_sample = dataset.shuffle(seed=random.randint(0, 1000)).select([0])
    text = "[" + " , ".join(["' " + t + " '" for t in random_sample["text"][0]]) + "]"
    audio_path = random_sample["audio_path"][0]
    return text, audio_path


def get_random_sample_transcribe(project_name):
    name_project = project_name
    path_project = os.path.join(path_data, name_project)
    file_metadata = os.path.join(path_project, "metadata.csv")
    if not os.path.isfile(file_metadata):
        return "", None

    data = ""
    with open(file_metadata, "r", encoding="utf-8-sig") as f:
        data = f.read()

    list_data = []
    for item in data.split("\n"):
        sp = item.split("|")
        if len(sp) != 2:
            continue
        list_data.append([os.path.join(path_project, "wavs", sp[0] + ".wav"), sp[1]])

    if list_data == []:
        return "", None

    random_item = random.choice(list_data)

    return random_item[1], random_item[0]


def get_random_sample_infer(project_name):
    text, audio = get_random_sample_transcribe(project_name)
    return (
        text,
        text,
        audio,
    )


def infer(file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step):
    global last_checkpoint, last_device, tts_api

    if not os.path.isfile(file_checkpoint):
        return None, "checkpoint not found!"

    if training_process is not None:
        device_test = "cpu"
    else:
        device_test = None

    if last_checkpoint != file_checkpoint or last_device != device_test:
        if last_checkpoint != file_checkpoint:
            last_checkpoint = file_checkpoint
        if last_device != device_test:
            last_device = device_test

        tts_api = F5TTS(model_type=exp_name, ckpt_file=file_checkpoint, device=device_test)

        print("update", device_test, file_checkpoint)

    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        tts_api.infer(gen_text=gen_text, ref_text=ref_text, ref_file=ref_audio, nfe_step=nfe_step, file_wave=f.name)
        return f.name, tts_api.device


def check_finetune(finetune):
    return gr.update(interactive=finetune), gr.update(interactive=finetune), gr.update(interactive=finetune)


def get_checkpoints_project(project_name, is_gradio=True):
    if project_name is None:
        return [], ""
    project_name = project_name.replace("_pinyin", "").replace("_char", "")
    path_project_ckpts = os.path.join("ckpts", project_name)

    if os.path.isdir(path_project_ckpts):
        files_checkpoints = glob(os.path.join(path_project_ckpts, "*.pt"))
        files_checkpoints = sorted(
            files_checkpoints,
            key=lambda x: int(os.path.basename(x).split("_")[1].split(".")[0])
            if os.path.basename(x) != "model_last.pt"
            else float("inf"),
        )
    else:
        files_checkpoints = []

    selelect_checkpoint = None if not files_checkpoints else files_checkpoints[0]

    if is_gradio:
        return gr.update(choices=files_checkpoints, value=selelect_checkpoint)

    return files_checkpoints, selelect_checkpoint


def get_gpu_stats():
    gpu_stats = ""

    if torch.cuda.is_available():
        gpu_count = torch.cuda.device_count()
        for i in range(gpu_count):
            gpu_name = torch.cuda.get_device_name(i)
            gpu_properties = torch.cuda.get_device_properties(i)
            total_memory = gpu_properties.total_memory / (1024**3)  # in GB
            allocated_memory = torch.cuda.memory_allocated(i) / (1024**2)  # in MB
            reserved_memory = torch.cuda.memory_reserved(i) / (1024**2)  # in MB

            gpu_stats += (
                f"GPU {i} Name: {gpu_name}\n"
                f"Total GPU memory (GPU {i}): {total_memory:.2f} GB\n"
                f"Allocated GPU memory (GPU {i}): {allocated_memory:.2f} MB\n"
                f"Reserved GPU memory (GPU {i}): {reserved_memory:.2f} MB\n\n"
            )

    elif torch.backends.mps.is_available():
        gpu_count = 1
        gpu_stats += "MPS GPU\n"
        total_memory = psutil.virtual_memory().total / (
            1024**3
        )  # Total system memory (MPS doesn't have its own memory)
        allocated_memory = 0
        reserved_memory = 0

        gpu_stats += (
            f"Total system memory: {total_memory:.2f} GB\n"
            f"Allocated GPU memory (MPS): {allocated_memory:.2f} MB\n"
            f"Reserved GPU memory (MPS): {reserved_memory:.2f} MB\n"
        )

    else:
        gpu_stats = "No GPU available"

    return gpu_stats


def get_cpu_stats():
    cpu_usage = psutil.cpu_percent(interval=1)
    memory_info = psutil.virtual_memory()
    memory_used = memory_info.used / (1024**2)
    memory_total = memory_info.total / (1024**2)
    memory_percent = memory_info.percent

    pid = os.getpid()
    process = psutil.Process(pid)
    nice_value = process.nice()

    cpu_stats = (
        f"CPU Usage: {cpu_usage:.2f}%\n"
        f"System Memory: {memory_used:.2f} MB used / {memory_total:.2f} MB total ({memory_percent}% used)\n"
        f"Process Priority (Nice value): {nice_value}"
    )

    return cpu_stats


def get_combined_stats():
    gpu_stats = get_gpu_stats()
    cpu_stats = get_cpu_stats()
    combined_stats = f"### GPU Stats\n{gpu_stats}\n\n### CPU Stats\n{cpu_stats}"
    return combined_stats


with gr.Blocks() as app:
    gr.Markdown(
        """
# E2/F5 TTS AUTOMATIC FINETUNE 

This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:

* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)

The checkpoints support English and Chinese.

for tutorial and updates check here (https://github.com/SWivid/F5-TTS/discussions/143)
"""
    )

    with gr.Row():
        projects, projects_selelect = get_list_projects()
        tokenizer_type = gr.Radio(label="Tokenizer Type", choices=["pinyin", "char"], value="pinyin")
        project_name = gr.Textbox(label="project name", value="my_speak")
        bt_create = gr.Button("create new project")

    cm_project = gr.Dropdown(choices=projects, value=projects_selelect, label="Project", allow_custom_value=True)

    bt_create.click(fn=create_data_project, inputs=[project_name, tokenizer_type], outputs=[cm_project])

    with gr.Tabs():
        with gr.TabItem("transcribe Data"):
            ch_manual = gr.Checkbox(label="audio from path", value=False)

            mark_info_transcribe = gr.Markdown(
                """```plaintext    
     Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory. 
                 
     my_speak/
     β”‚
     └── dataset/
         β”œβ”€β”€ audio1.wav
         └── audio2.wav
         ...
     ```""",
                visible=False,
            )

            audio_speaker = gr.File(label="voice", type="filepath", file_count="multiple")
            txt_lang = gr.Text(label="Language", value="english")
            bt_transcribe = bt_create = gr.Button("transcribe")
            txt_info_transcribe = gr.Text(label="info", value="")
            bt_transcribe.click(
                fn=transcribe_all,
                inputs=[cm_project, audio_speaker, txt_lang, ch_manual],
                outputs=[txt_info_transcribe],
            )
            ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe])

            random_sample_transcribe = gr.Button("random sample")

            with gr.Row():
                random_text_transcribe = gr.Text(label="Text")
                random_audio_transcribe = gr.Audio(label="Audio", type="filepath")

            random_sample_transcribe.click(
                fn=get_random_sample_transcribe,
                inputs=[cm_project],
                outputs=[random_text_transcribe, random_audio_transcribe],
            )

        with gr.TabItem("prepare Data"):
            gr.Markdown(
                """```plaintext    
     place all your wavs folder and your metadata.csv file in {your name project}                                 
     my_speak/
     β”‚
     β”œβ”€β”€ wavs/
     β”‚   β”œβ”€β”€ audio1.wav
     β”‚   └── audio2.wav
     |   ...
     β”‚
     └── metadata.csv
      
     file format metadata.csv

     audio1|text1
     audio2|text1
     ...

     ```"""
            )
            ch_tokenizern = gr.Checkbox(label="create vocabulary from dataset", value=False)
            bt_prepare = bt_create = gr.Button("prepare")
            txt_info_prepare = gr.Text(label="info", value="")
            txt_vocab_prepare = gr.Text(label="vocab", value="")
            bt_prepare.click(
                fn=create_metadata, inputs=[cm_project, ch_tokenizern], outputs=[txt_info_prepare, txt_vocab_prepare]
            )

            random_sample_prepare = gr.Button("random sample")

            with gr.Row():
                random_text_prepare = gr.Text(label="Pinyin")
                random_audio_prepare = gr.Audio(label="Audio", type="filepath")

            random_sample_prepare.click(
                fn=get_random_sample_prepare, inputs=[cm_project], outputs=[random_text_prepare, random_audio_prepare]
            )

        with gr.TabItem("train Data"):
            with gr.Row():
                bt_calculate = bt_create = gr.Button("Auto Settings")
                lb_samples = gr.Label(label="samples")
                batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")

            with gr.Row():
                ch_finetune = bt_create = gr.Checkbox(label="finetune", value=True)
                tokenizer_file = gr.Textbox(label="Tokenizer File", value="")
                file_checkpoint_train = gr.Textbox(label="Pretrain Model", value="")

            with gr.Row():
                exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
                learning_rate = gr.Number(label="Learning Rate", value=1e-5, step=1e-5)

            with gr.Row():
                batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000)
                max_samples = gr.Number(label="Max Samples", value=64)

            with gr.Row():
                grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1)
                max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0)

            with gr.Row():
                epochs = gr.Number(label="Epochs", value=10)
                num_warmup_updates = gr.Number(label="Warmup Updates", value=5)

            with gr.Row():
                save_per_updates = gr.Number(label="Save per Updates", value=10)
                last_per_steps = gr.Number(label="Last per Steps", value=50)

            with gr.Row():
                mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "fpb16"], value="none")
                start_button = gr.Button("Start Training")
                stop_button = gr.Button("Stop Training", interactive=False)

            txt_info_train = gr.Text(label="info", value="")
            start_button.click(
                fn=start_training,
                inputs=[
                    cm_project,
                    exp_name,
                    learning_rate,
                    batch_size_per_gpu,
                    batch_size_type,
                    max_samples,
                    grad_accumulation_steps,
                    max_grad_norm,
                    epochs,
                    num_warmup_updates,
                    save_per_updates,
                    last_per_steps,
                    ch_finetune,
                    file_checkpoint_train,
                    tokenizer_type,
                    tokenizer_file,
                    mixed_precision,
                ],
                outputs=[txt_info_train, start_button, stop_button],
            )
            stop_button.click(fn=stop_training, outputs=[txt_info_train, start_button, stop_button])

            bt_calculate.click(
                fn=calculate_train,
                inputs=[
                    cm_project,
                    batch_size_type,
                    max_samples,
                    learning_rate,
                    num_warmup_updates,
                    save_per_updates,
                    last_per_steps,
                    ch_finetune,
                ],
                outputs=[
                    batch_size_per_gpu,
                    max_samples,
                    num_warmup_updates,
                    save_per_updates,
                    last_per_steps,
                    lb_samples,
                    learning_rate,
                    epochs,
                ],
            )

            ch_finetune.change(
                check_finetune, inputs=[ch_finetune], outputs=[file_checkpoint_train, tokenizer_file, tokenizer_type]
            )

        with gr.TabItem("reduse checkpoint"):
            txt_path_checkpoint = gr.Text(label="path checkpoint :")
            txt_path_checkpoint_small = gr.Text(label="path output :")
            ch_safetensors = gr.Checkbox(label="safetensors", value="")
            txt_info_reduse = gr.Text(label="info", value="")
            reduse_button = gr.Button("reduse")
            reduse_button.click(
                fn=extract_and_save_ema_model,
                inputs=[txt_path_checkpoint, txt_path_checkpoint_small, ch_safetensors],
                outputs=[txt_info_reduse],
            )

        with gr.TabItem("vocab check"):
            check_button = gr.Button("check vocab")
            txt_info_check = gr.Text(label="info", value="")
            check_button.click(fn=vocab_check, inputs=[cm_project], outputs=[txt_info_check])

        with gr.TabItem("test model"):
            exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
            list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False)

            nfe_step = gr.Number(label="n_step", value=32)

            with gr.Row():
                cm_checkpoint = gr.Dropdown(
                    choices=list_checkpoints, value=checkpoint_select, label="checkpoints", allow_custom_value=True
                )
                bt_checkpoint_refresh = gr.Button("refresh")

            random_sample_infer = gr.Button("random sample")

            ref_text = gr.Textbox(label="ref text")
            ref_audio = gr.Audio(label="audio ref", type="filepath")
            gen_text = gr.Textbox(label="gen text")
            random_sample_infer.click(
                fn=get_random_sample_infer, inputs=[cm_project], outputs=[ref_text, gen_text, ref_audio]
            )

            with gr.Row():
                txt_info_gpu = gr.Textbox("", label="device")
                check_button_infer = gr.Button("infer")

            gen_audio = gr.Audio(label="audio gen", type="filepath")

            check_button_infer.click(
                fn=infer,
                inputs=[cm_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step],
                outputs=[gen_audio, txt_info_gpu],
            )

            bt_checkpoint_refresh.click(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
            cm_project.change(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])

        with gr.TabItem("system info"):
            output_box = gr.Textbox(label="GPU and CPU Information", lines=20)

            def update_stats():
                return get_combined_stats()

            update_button = gr.Button("Update Stats")
            update_button.click(fn=update_stats, outputs=output_box)

            def auto_update():
                yield gr.update(value=update_stats())

            gr.update(fn=auto_update, inputs=[], outputs=output_box)


@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(
    "--share",
    "-s",
    default=False,
    is_flag=True,
    help="Share the app via Gradio share link",
)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
def main(port, host, share, api):
    global app
    print("Starting app...")
    app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api)


if __name__ == "__main__":
    main()