File size: 42,677 Bytes
4dab15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 |
import gc
import json
import os
import platform
import psutil
import random
import signal
import shutil
import subprocess
import sys
import tempfile
import time
from glob import glob
import click
import gradio as gr
import librosa
import numpy as np
import torch
import torchaudio
from datasets import Dataset as Dataset_
from datasets.arrow_writer import ArrowWriter
from safetensors.torch import save_file
from scipy.io import wavfile
from transformers import pipeline
from f5_tts.api import F5TTS
from f5_tts.model.utils import convert_char_to_pinyin
training_process = None
system = platform.system()
python_executable = sys.executable or "python"
tts_api = None
last_checkpoint = ""
last_device = ""
path_data = "data"
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
pipe = None
# Load metadata
def get_audio_duration(audio_path):
"""Calculate the duration of an audio file."""
audio, sample_rate = torchaudio.load(audio_path)
num_channels = audio.shape[0]
return audio.shape[1] / (sample_rate * num_channels)
def clear_text(text):
"""Clean and prepare text by lowering the case and stripping whitespace."""
return text.lower().strip()
def get_rms(
y,
frame_length=2048,
hop_length=512,
pad_mode="constant",
): # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
padding = (int(frame_length // 2), int(frame_length // 2))
y = np.pad(y, padding, mode=pad_mode)
axis = -1
# put our new within-frame axis at the end for now
out_strides = y.strides + tuple([y.strides[axis]])
# Reduce the shape on the framing axis
x_shape_trimmed = list(y.shape)
x_shape_trimmed[axis] -= frame_length - 1
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
if axis < 0:
target_axis = axis - 1
else:
target_axis = axis + 1
xw = np.moveaxis(xw, -1, target_axis)
# Downsample along the target axis
slices = [slice(None)] * xw.ndim
slices[axis] = slice(0, None, hop_length)
x = xw[tuple(slices)]
# Calculate power
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
return np.sqrt(power)
class Slicer: # https://github.com/RVC-Boss/GPT-SoVITS/blob/main/tools/slicer2.py
def __init__(
self,
sr: int,
threshold: float = -40.0,
min_length: int = 2000,
min_interval: int = 300,
hop_size: int = 20,
max_sil_kept: int = 2000,
):
if not min_length >= min_interval >= hop_size:
raise ValueError("The following condition must be satisfied: min_length >= min_interval >= hop_size")
if not max_sil_kept >= hop_size:
raise ValueError("The following condition must be satisfied: max_sil_kept >= hop_size")
min_interval = sr * min_interval / 1000
self.threshold = 10 ** (threshold / 20.0)
self.hop_size = round(sr * hop_size / 1000)
self.win_size = min(round(min_interval), 4 * self.hop_size)
self.min_length = round(sr * min_length / 1000 / self.hop_size)
self.min_interval = round(min_interval / self.hop_size)
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
def _apply_slice(self, waveform, begin, end):
if len(waveform.shape) > 1:
return waveform[:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)]
else:
return waveform[begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)]
# @timeit
def slice(self, waveform):
if len(waveform.shape) > 1:
samples = waveform.mean(axis=0)
else:
samples = waveform
if samples.shape[0] <= self.min_length:
return [waveform]
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
sil_tags = []
silence_start = None
clip_start = 0
for i, rms in enumerate(rms_list):
# Keep looping while frame is silent.
if rms < self.threshold:
# Record start of silent frames.
if silence_start is None:
silence_start = i
continue
# Keep looping while frame is not silent and silence start has not been recorded.
if silence_start is None:
continue
# Clear recorded silence start if interval is not enough or clip is too short
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
if not is_leading_silence and not need_slice_middle:
silence_start = None
continue
# Need slicing. Record the range of silent frames to be removed.
if i - silence_start <= self.max_sil_kept:
pos = rms_list[silence_start : i + 1].argmin() + silence_start
if silence_start == 0:
sil_tags.append((0, pos))
else:
sil_tags.append((pos, pos))
clip_start = pos
elif i - silence_start <= self.max_sil_kept * 2:
pos = rms_list[i - self.max_sil_kept : silence_start + self.max_sil_kept + 1].argmin()
pos += i - self.max_sil_kept
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
if silence_start == 0:
sil_tags.append((0, pos_r))
clip_start = pos_r
else:
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
clip_start = max(pos_r, pos)
else:
pos_l = rms_list[silence_start : silence_start + self.max_sil_kept + 1].argmin() + silence_start
pos_r = rms_list[i - self.max_sil_kept : i + 1].argmin() + i - self.max_sil_kept
if silence_start == 0:
sil_tags.append((0, pos_r))
else:
sil_tags.append((pos_l, pos_r))
clip_start = pos_r
silence_start = None
# Deal with trailing silence.
total_frames = rms_list.shape[0]
if silence_start is not None and total_frames - silence_start >= self.min_interval:
silence_end = min(total_frames, silence_start + self.max_sil_kept)
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
sil_tags.append((pos, total_frames + 1))
# Apply and return slices.
####ι³ι’+θ΅·ε§ζΆι΄+η»ζ’ζΆι΄
if len(sil_tags) == 0:
return [[waveform, 0, int(total_frames * self.hop_size)]]
else:
chunks = []
if sil_tags[0][0] > 0:
chunks.append([self._apply_slice(waveform, 0, sil_tags[0][0]), 0, int(sil_tags[0][0] * self.hop_size)])
for i in range(len(sil_tags) - 1):
chunks.append(
[
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]),
int(sil_tags[i][1] * self.hop_size),
int(sil_tags[i + 1][0] * self.hop_size),
]
)
if sil_tags[-1][1] < total_frames:
chunks.append(
[
self._apply_slice(waveform, sil_tags[-1][1], total_frames),
int(sil_tags[-1][1] * self.hop_size),
int(total_frames * self.hop_size),
]
)
return chunks
# terminal
def terminate_process_tree(pid, including_parent=True):
try:
parent = psutil.Process(pid)
except psutil.NoSuchProcess:
# Process already terminated
return
children = parent.children(recursive=True)
for child in children:
try:
os.kill(child.pid, signal.SIGTERM) # or signal.SIGKILL
except OSError:
pass
if including_parent:
try:
os.kill(parent.pid, signal.SIGTERM) # or signal.SIGKILL
except OSError:
pass
def terminate_process(pid):
if system == "Windows":
cmd = f"taskkill /t /f /pid {pid}"
os.system(cmd)
else:
terminate_process_tree(pid)
def start_training(
dataset_name="",
exp_name="F5TTS_Base",
learning_rate=1e-4,
batch_size_per_gpu=400,
batch_size_type="frame",
max_samples=64,
grad_accumulation_steps=1,
max_grad_norm=1.0,
epochs=11,
num_warmup_updates=200,
save_per_updates=400,
last_per_steps=800,
finetune=True,
file_checkpoint_train="",
tokenizer_type="pinyin",
tokenizer_file="",
mixed_precision="fp16",
):
global training_process, tts_api
if tts_api is not None:
del tts_api
gc.collect()
torch.cuda.empty_cache()
tts_api = None
path_project = os.path.join(path_data, dataset_name)
if not os.path.isdir(path_project):
yield (
f"There is not project with name {dataset_name}",
gr.update(interactive=True),
gr.update(interactive=False),
)
return
file_raw = os.path.join(path_project, "raw.arrow")
if not os.path.isfile(file_raw):
yield f"There is no file {file_raw}", gr.update(interactive=True), gr.update(interactive=False)
return
# Check if a training process is already running
if training_process is not None:
return "Train run already!", gr.update(interactive=False), gr.update(interactive=True)
yield "start train", gr.update(interactive=False), gr.update(interactive=False)
# Command to run the training script with the specified arguments
if tokenizer_file == "":
if dataset_name.endswith("_pinyin"):
tokenizer_type = "pinyin"
elif dataset_name.endswith("_char"):
tokenizer_type = "char"
else:
tokenizer_file = "custom"
dataset_name = dataset_name.replace("_pinyin", "").replace("_char", "")
if mixed_precision != "none":
fp16 = f"--mixed_precision={mixed_precision}"
else:
fp16 = ""
cmd = (
f"accelerate launch {fp16} finetune-cli.py --exp_name {exp_name} "
f"--learning_rate {learning_rate} "
f"--batch_size_per_gpu {batch_size_per_gpu} "
f"--batch_size_type {batch_size_type} "
f"--max_samples {max_samples} "
f"--grad_accumulation_steps {grad_accumulation_steps} "
f"--max_grad_norm {max_grad_norm} "
f"--epochs {epochs} "
f"--num_warmup_updates {num_warmup_updates} "
f"--save_per_updates {save_per_updates} "
f"--last_per_steps {last_per_steps} "
f"--dataset_name {dataset_name}"
)
if finetune:
cmd += f" --finetune {finetune}"
if file_checkpoint_train != "":
cmd += f" --file_checkpoint_train {file_checkpoint_train}"
if tokenizer_file != "":
cmd += f" --tokenizer_path {tokenizer_file}"
cmd += f" --tokenizer {tokenizer_type} "
print(cmd)
try:
# Start the training process
training_process = subprocess.Popen(cmd, shell=True)
time.sleep(5)
yield "train start", gr.update(interactive=False), gr.update(interactive=True)
# Wait for the training process to finish
training_process.wait()
time.sleep(1)
if training_process is None:
text_info = "train stop"
else:
text_info = "train complete !"
except Exception as e: # Catch all exceptions
# Ensure that we reset the training process variable in case of an error
text_info = f"An error occurred: {str(e)}"
training_process = None
yield text_info, gr.update(interactive=True), gr.update(interactive=False)
def stop_training():
global training_process
if training_process is None:
return "Train not run !", gr.update(interactive=True), gr.update(interactive=False)
terminate_process_tree(training_process.pid)
training_process = None
return "train stop", gr.update(interactive=True), gr.update(interactive=False)
def get_list_projects():
project_list = []
for folder in os.listdir("data"):
path_folder = os.path.join("data", folder)
if not os.path.isdir(path_folder):
continue
folder = folder.lower()
if folder == "emilia_zh_en_pinyin":
continue
project_list.append(folder)
projects_selelect = None if not project_list else project_list[-1]
return project_list, projects_selelect
def create_data_project(name, tokenizer_type):
name += "_" + tokenizer_type
os.makedirs(os.path.join(path_data, name), exist_ok=True)
os.makedirs(os.path.join(path_data, name, "dataset"), exist_ok=True)
project_list, projects_selelect = get_list_projects()
return gr.update(choices=project_list, value=name)
def transcribe(file_audio, language="english"):
global pipe
if pipe is None:
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device=device,
)
text_transcribe = pipe(
file_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe", "language": language},
return_timestamps=False,
)["text"].strip()
return text_transcribe
def transcribe_all(name_project, audio_files, language, user=False, progress=gr.Progress()):
path_project = os.path.join(path_data, name_project)
path_dataset = os.path.join(path_project, "dataset")
path_project_wavs = os.path.join(path_project, "wavs")
file_metadata = os.path.join(path_project, "metadata.csv")
if not user:
if audio_files is None:
return "You need to load an audio file."
if os.path.isdir(path_project_wavs):
shutil.rmtree(path_project_wavs)
if os.path.isfile(file_metadata):
os.remove(file_metadata)
os.makedirs(path_project_wavs, exist_ok=True)
if user:
file_audios = [
file
for format in ("*.wav", "*.ogg", "*.opus", "*.mp3", "*.flac")
for file in glob(os.path.join(path_dataset, format))
]
if file_audios == []:
return "No audio file was found in the dataset."
else:
file_audios = audio_files
alpha = 0.5
_max = 1.0
slicer = Slicer(24000)
num = 0
error_num = 0
data = ""
for file_audio in progress.tqdm(file_audios, desc="transcribe files", total=len((file_audios))):
audio, _ = librosa.load(file_audio, sr=24000, mono=True)
list_slicer = slicer.slice(audio)
for chunk, start, end in progress.tqdm(list_slicer, total=len(list_slicer), desc="slicer files"):
name_segment = os.path.join(f"segment_{num}")
file_segment = os.path.join(path_project_wavs, f"{name_segment}.wav")
tmp_max = np.abs(chunk).max()
if tmp_max > 1:
chunk /= tmp_max
chunk = (chunk / tmp_max * (_max * alpha)) + (1 - alpha) * chunk
wavfile.write(file_segment, 24000, (chunk * 32767).astype(np.int16))
try:
text = transcribe(file_segment, language)
text = text.lower().strip().replace('"', "")
data += f"{name_segment}|{text}\n"
num += 1
except: # noqa: E722
error_num += 1
with open(file_metadata, "w", encoding="utf-8-sig") as f:
f.write(data)
if error_num != []:
error_text = f"\nerror files : {error_num}"
else:
error_text = ""
return f"transcribe complete samples : {num}\npath : {path_project_wavs}{error_text}"
def format_seconds_to_hms(seconds):
hours = int(seconds / 3600)
minutes = int((seconds % 3600) / 60)
seconds = seconds % 60
return "{:02d}:{:02d}:{:02d}".format(hours, minutes, int(seconds))
def create_metadata(name_project, ch_tokenizer, progress=gr.Progress()):
path_project = os.path.join(path_data, name_project)
path_project_wavs = os.path.join(path_project, "wavs")
file_metadata = os.path.join(path_project, "metadata.csv")
file_raw = os.path.join(path_project, "raw.arrow")
file_duration = os.path.join(path_project, "duration.json")
file_vocab = os.path.join(path_project, "vocab.txt")
if not os.path.isfile(file_metadata):
return "The file was not found in " + file_metadata, ""
with open(file_metadata, "r", encoding="utf-8-sig") as f:
data = f.read()
audio_path_list = []
text_list = []
duration_list = []
count = data.split("\n")
lenght = 0
result = []
error_files = []
text_vocab_set = set()
for line in progress.tqdm(data.split("\n"), total=count):
sp_line = line.split("|")
if len(sp_line) != 2:
continue
name_audio, text = sp_line[:2]
file_audio = os.path.join(path_project_wavs, name_audio + ".wav")
if not os.path.isfile(file_audio):
error_files.append([file_audio, "error path"])
continue
try:
duration = get_audio_duration(file_audio)
except Exception as e:
error_files.append([file_audio, "duration"])
print(f"Error processing {file_audio}: {e}")
continue
if duration < 1 and duration > 25:
error_files.append([file_audio, "duration < 1 and > 25 "])
continue
if len(text) < 4:
error_files.append([file_audio, "very small text len 3"])
continue
text = clear_text(text)
text = convert_char_to_pinyin([text], polyphone=True)[0]
audio_path_list.append(file_audio)
duration_list.append(duration)
text_list.append(text)
result.append({"audio_path": file_audio, "text": text, "duration": duration})
if ch_tokenizer:
text_vocab_set.update(list(text))
lenght += duration
if duration_list == []:
return f"Error: No audio files found in the specified path : {path_project_wavs}", ""
min_second = round(min(duration_list), 2)
max_second = round(max(duration_list), 2)
with ArrowWriter(path=file_raw, writer_batch_size=1) as writer:
for line in progress.tqdm(result, total=len(result), desc="prepare data"):
writer.write(line)
with open(file_duration, "w") as f:
json.dump({"duration": duration_list}, f, ensure_ascii=False)
new_vocal = ""
if not ch_tokenizer:
file_vocab_finetune = "data/Emilia_ZH_EN_pinyin/vocab.txt"
if not os.path.isfile(file_vocab_finetune):
return "Error: Vocabulary file 'Emilia_ZH_EN_pinyin' not found!"
shutil.copy2(file_vocab_finetune, file_vocab)
with open(file_vocab, "r", encoding="utf-8-sig") as f:
vocab_char_map = {}
for i, char in enumerate(f):
vocab_char_map[char[:-1]] = i
vocab_size = len(vocab_char_map)
else:
with open(file_vocab, "w", encoding="utf-8-sig") as f:
for vocab in sorted(text_vocab_set):
f.write(vocab + "\n")
new_vocal += vocab + "\n"
vocab_size = len(text_vocab_set)
if error_files != []:
error_text = "\n".join([" = ".join(item) for item in error_files])
else:
error_text = ""
return (
f"prepare complete \nsamples : {len(text_list)}\ntime data : {format_seconds_to_hms(lenght)}\nmin sec : {min_second}\nmax sec : {max_second}\nfile_arrow : {file_raw}\nvocab : {vocab_size}\n{error_text}",
new_vocal,
)
def check_user(value):
return gr.update(visible=not value), gr.update(visible=value)
def calculate_train(
name_project,
batch_size_type,
max_samples,
learning_rate,
num_warmup_updates,
save_per_updates,
last_per_steps,
finetune,
):
path_project = os.path.join(path_data, name_project)
file_duraction = os.path.join(path_project, "duration.json")
if not os.path.isfile(file_duraction):
return (
1000,
max_samples,
num_warmup_updates,
save_per_updates,
last_per_steps,
"project not found !",
learning_rate,
)
with open(file_duraction, "r") as file:
data = json.load(file)
duration_list = data["duration"]
samples = len(duration_list)
hours = sum(duration_list) / 3600
# if torch.cuda.is_available():
# gpu_properties = torch.cuda.get_device_properties(0)
# total_memory = gpu_properties.total_memory / (1024**3)
# elif torch.backends.mps.is_available():
# total_memory = psutil.virtual_memory().available / (1024**3)
if torch.cuda.is_available():
gpu_count = torch.cuda.device_count()
total_memory = 0
for i in range(gpu_count):
gpu_properties = torch.cuda.get_device_properties(i)
total_memory += gpu_properties.total_memory / (1024**3) # in GB
elif torch.backends.mps.is_available():
gpu_count = 1
total_memory = psutil.virtual_memory().available / (1024**3)
if batch_size_type == "frame":
batch = int(total_memory * 0.5)
batch = (lambda num: num + 1 if num % 2 != 0 else num)(batch)
batch_size_per_gpu = int(38400 / batch)
else:
batch_size_per_gpu = int(total_memory / 8)
batch_size_per_gpu = (lambda num: num + 1 if num % 2 != 0 else num)(batch_size_per_gpu)
batch = batch_size_per_gpu
if batch_size_per_gpu <= 0:
batch_size_per_gpu = 1
if samples < 64:
max_samples = int(samples * 0.25)
else:
max_samples = 64
num_warmup_updates = int(samples * 0.05)
save_per_updates = int(samples * 0.10)
last_per_steps = int(save_per_updates * 5)
max_samples = (lambda num: num + 1 if num % 2 != 0 else num)(max_samples)
num_warmup_updates = (lambda num: num + 1 if num % 2 != 0 else num)(num_warmup_updates)
save_per_updates = (lambda num: num + 1 if num % 2 != 0 else num)(save_per_updates)
last_per_steps = (lambda num: num + 1 if num % 2 != 0 else num)(last_per_steps)
total_hours = hours
mel_hop_length = 256
mel_sampling_rate = 24000
# target
wanted_max_updates = 1000000
# train params
gpus = gpu_count
frames_per_gpu = batch_size_per_gpu # 8 * 38400 = 307200
grad_accum = 1
# intermediate
mini_batch_frames = frames_per_gpu * grad_accum * gpus
mini_batch_hours = mini_batch_frames * mel_hop_length / mel_sampling_rate / 3600
updates_per_epoch = total_hours / mini_batch_hours
# steps_per_epoch = updates_per_epoch * grad_accum
epochs = wanted_max_updates / updates_per_epoch
if finetune:
learning_rate = 1e-5
else:
learning_rate = 7.5e-5
return (
batch_size_per_gpu,
max_samples,
num_warmup_updates,
save_per_updates,
last_per_steps,
samples,
learning_rate,
int(epochs),
)
def extract_and_save_ema_model(checkpoint_path: str, new_checkpoint_path: str, safetensors: bool) -> str:
try:
checkpoint = torch.load(checkpoint_path)
print("Original Checkpoint Keys:", checkpoint.keys())
ema_model_state_dict = checkpoint.get("ema_model_state_dict", None)
if ema_model_state_dict is None:
return "No 'ema_model_state_dict' found in the checkpoint."
if safetensors:
new_checkpoint_path = new_checkpoint_path.replace(".pt", ".safetensors")
save_file(ema_model_state_dict, new_checkpoint_path)
else:
new_checkpoint_path = new_checkpoint_path.replace(".safetensors", ".pt")
new_checkpoint = {"ema_model_state_dict": ema_model_state_dict}
torch.save(new_checkpoint, new_checkpoint_path)
return f"New checkpoint saved at: {new_checkpoint_path}"
except Exception as e:
return f"An error occurred: {e}"
def vocab_check(project_name):
name_project = project_name
path_project = os.path.join(path_data, name_project)
file_metadata = os.path.join(path_project, "metadata.csv")
file_vocab = "data/Emilia_ZH_EN_pinyin/vocab.txt"
if not os.path.isfile(file_vocab):
return f"the file {file_vocab} not found !"
with open(file_vocab, "r", encoding="utf-8-sig") as f:
data = f.read()
vocab = data.split("\n")
vocab = set(vocab)
if not os.path.isfile(file_metadata):
return f"the file {file_metadata} not found !"
with open(file_metadata, "r", encoding="utf-8-sig") as f:
data = f.read()
miss_symbols = []
miss_symbols_keep = {}
for item in data.split("\n"):
sp = item.split("|")
if len(sp) != 2:
continue
text = sp[1].lower().strip()
for t in text:
if t not in vocab and t not in miss_symbols_keep:
miss_symbols.append(t)
miss_symbols_keep[t] = t
if miss_symbols == []:
info = "You can train using your language !"
else:
info = f"The following symbols are missing in your language : {len(miss_symbols)}\n\n" + "\n".join(miss_symbols)
return info
def get_random_sample_prepare(project_name):
name_project = project_name
path_project = os.path.join(path_data, name_project)
file_arrow = os.path.join(path_project, "raw.arrow")
if not os.path.isfile(file_arrow):
return "", None
dataset = Dataset_.from_file(file_arrow)
random_sample = dataset.shuffle(seed=random.randint(0, 1000)).select([0])
text = "[" + " , ".join(["' " + t + " '" for t in random_sample["text"][0]]) + "]"
audio_path = random_sample["audio_path"][0]
return text, audio_path
def get_random_sample_transcribe(project_name):
name_project = project_name
path_project = os.path.join(path_data, name_project)
file_metadata = os.path.join(path_project, "metadata.csv")
if not os.path.isfile(file_metadata):
return "", None
data = ""
with open(file_metadata, "r", encoding="utf-8-sig") as f:
data = f.read()
list_data = []
for item in data.split("\n"):
sp = item.split("|")
if len(sp) != 2:
continue
list_data.append([os.path.join(path_project, "wavs", sp[0] + ".wav"), sp[1]])
if list_data == []:
return "", None
random_item = random.choice(list_data)
return random_item[1], random_item[0]
def get_random_sample_infer(project_name):
text, audio = get_random_sample_transcribe(project_name)
return (
text,
text,
audio,
)
def infer(file_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step):
global last_checkpoint, last_device, tts_api
if not os.path.isfile(file_checkpoint):
return None, "checkpoint not found!"
if training_process is not None:
device_test = "cpu"
else:
device_test = None
if last_checkpoint != file_checkpoint or last_device != device_test:
if last_checkpoint != file_checkpoint:
last_checkpoint = file_checkpoint
if last_device != device_test:
last_device = device_test
tts_api = F5TTS(model_type=exp_name, ckpt_file=file_checkpoint, device=device_test)
print("update", device_test, file_checkpoint)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
tts_api.infer(gen_text=gen_text, ref_text=ref_text, ref_file=ref_audio, nfe_step=nfe_step, file_wave=f.name)
return f.name, tts_api.device
def check_finetune(finetune):
return gr.update(interactive=finetune), gr.update(interactive=finetune), gr.update(interactive=finetune)
def get_checkpoints_project(project_name, is_gradio=True):
if project_name is None:
return [], ""
project_name = project_name.replace("_pinyin", "").replace("_char", "")
path_project_ckpts = os.path.join("ckpts", project_name)
if os.path.isdir(path_project_ckpts):
files_checkpoints = glob(os.path.join(path_project_ckpts, "*.pt"))
files_checkpoints = sorted(
files_checkpoints,
key=lambda x: int(os.path.basename(x).split("_")[1].split(".")[0])
if os.path.basename(x) != "model_last.pt"
else float("inf"),
)
else:
files_checkpoints = []
selelect_checkpoint = None if not files_checkpoints else files_checkpoints[0]
if is_gradio:
return gr.update(choices=files_checkpoints, value=selelect_checkpoint)
return files_checkpoints, selelect_checkpoint
def get_gpu_stats():
gpu_stats = ""
if torch.cuda.is_available():
gpu_count = torch.cuda.device_count()
for i in range(gpu_count):
gpu_name = torch.cuda.get_device_name(i)
gpu_properties = torch.cuda.get_device_properties(i)
total_memory = gpu_properties.total_memory / (1024**3) # in GB
allocated_memory = torch.cuda.memory_allocated(i) / (1024**2) # in MB
reserved_memory = torch.cuda.memory_reserved(i) / (1024**2) # in MB
gpu_stats += (
f"GPU {i} Name: {gpu_name}\n"
f"Total GPU memory (GPU {i}): {total_memory:.2f} GB\n"
f"Allocated GPU memory (GPU {i}): {allocated_memory:.2f} MB\n"
f"Reserved GPU memory (GPU {i}): {reserved_memory:.2f} MB\n\n"
)
elif torch.backends.mps.is_available():
gpu_count = 1
gpu_stats += "MPS GPU\n"
total_memory = psutil.virtual_memory().total / (
1024**3
) # Total system memory (MPS doesn't have its own memory)
allocated_memory = 0
reserved_memory = 0
gpu_stats += (
f"Total system memory: {total_memory:.2f} GB\n"
f"Allocated GPU memory (MPS): {allocated_memory:.2f} MB\n"
f"Reserved GPU memory (MPS): {reserved_memory:.2f} MB\n"
)
else:
gpu_stats = "No GPU available"
return gpu_stats
def get_cpu_stats():
cpu_usage = psutil.cpu_percent(interval=1)
memory_info = psutil.virtual_memory()
memory_used = memory_info.used / (1024**2)
memory_total = memory_info.total / (1024**2)
memory_percent = memory_info.percent
pid = os.getpid()
process = psutil.Process(pid)
nice_value = process.nice()
cpu_stats = (
f"CPU Usage: {cpu_usage:.2f}%\n"
f"System Memory: {memory_used:.2f} MB used / {memory_total:.2f} MB total ({memory_percent}% used)\n"
f"Process Priority (Nice value): {nice_value}"
)
return cpu_stats
def get_combined_stats():
gpu_stats = get_gpu_stats()
cpu_stats = get_cpu_stats()
combined_stats = f"### GPU Stats\n{gpu_stats}\n\n### CPU Stats\n{cpu_stats}"
return combined_stats
with gr.Blocks() as app:
gr.Markdown(
"""
# E2/F5 TTS AUTOMATIC FINETUNE
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
The checkpoints support English and Chinese.
for tutorial and updates check here (https://github.com/SWivid/F5-TTS/discussions/143)
"""
)
with gr.Row():
projects, projects_selelect = get_list_projects()
tokenizer_type = gr.Radio(label="Tokenizer Type", choices=["pinyin", "char"], value="pinyin")
project_name = gr.Textbox(label="project name", value="my_speak")
bt_create = gr.Button("create new project")
cm_project = gr.Dropdown(choices=projects, value=projects_selelect, label="Project", allow_custom_value=True)
bt_create.click(fn=create_data_project, inputs=[project_name, tokenizer_type], outputs=[cm_project])
with gr.Tabs():
with gr.TabItem("transcribe Data"):
ch_manual = gr.Checkbox(label="audio from path", value=False)
mark_info_transcribe = gr.Markdown(
"""```plaintext
Place your 'wavs' folder and 'metadata.csv' file in the {your_project_name}' directory.
my_speak/
β
βββ dataset/
βββ audio1.wav
βββ audio2.wav
...
```""",
visible=False,
)
audio_speaker = gr.File(label="voice", type="filepath", file_count="multiple")
txt_lang = gr.Text(label="Language", value="english")
bt_transcribe = bt_create = gr.Button("transcribe")
txt_info_transcribe = gr.Text(label="info", value="")
bt_transcribe.click(
fn=transcribe_all,
inputs=[cm_project, audio_speaker, txt_lang, ch_manual],
outputs=[txt_info_transcribe],
)
ch_manual.change(fn=check_user, inputs=[ch_manual], outputs=[audio_speaker, mark_info_transcribe])
random_sample_transcribe = gr.Button("random sample")
with gr.Row():
random_text_transcribe = gr.Text(label="Text")
random_audio_transcribe = gr.Audio(label="Audio", type="filepath")
random_sample_transcribe.click(
fn=get_random_sample_transcribe,
inputs=[cm_project],
outputs=[random_text_transcribe, random_audio_transcribe],
)
with gr.TabItem("prepare Data"):
gr.Markdown(
"""```plaintext
place all your wavs folder and your metadata.csv file in {your name project}
my_speak/
β
βββ wavs/
β βββ audio1.wav
β βββ audio2.wav
| ...
β
βββ metadata.csv
file format metadata.csv
audio1|text1
audio2|text1
...
```"""
)
ch_tokenizern = gr.Checkbox(label="create vocabulary from dataset", value=False)
bt_prepare = bt_create = gr.Button("prepare")
txt_info_prepare = gr.Text(label="info", value="")
txt_vocab_prepare = gr.Text(label="vocab", value="")
bt_prepare.click(
fn=create_metadata, inputs=[cm_project, ch_tokenizern], outputs=[txt_info_prepare, txt_vocab_prepare]
)
random_sample_prepare = gr.Button("random sample")
with gr.Row():
random_text_prepare = gr.Text(label="Pinyin")
random_audio_prepare = gr.Audio(label="Audio", type="filepath")
random_sample_prepare.click(
fn=get_random_sample_prepare, inputs=[cm_project], outputs=[random_text_prepare, random_audio_prepare]
)
with gr.TabItem("train Data"):
with gr.Row():
bt_calculate = bt_create = gr.Button("Auto Settings")
lb_samples = gr.Label(label="samples")
batch_size_type = gr.Radio(label="Batch Size Type", choices=["frame", "sample"], value="frame")
with gr.Row():
ch_finetune = bt_create = gr.Checkbox(label="finetune", value=True)
tokenizer_file = gr.Textbox(label="Tokenizer File", value="")
file_checkpoint_train = gr.Textbox(label="Pretrain Model", value="")
with gr.Row():
exp_name = gr.Radio(label="Model", choices=["F5TTS_Base", "E2TTS_Base"], value="F5TTS_Base")
learning_rate = gr.Number(label="Learning Rate", value=1e-5, step=1e-5)
with gr.Row():
batch_size_per_gpu = gr.Number(label="Batch Size per GPU", value=1000)
max_samples = gr.Number(label="Max Samples", value=64)
with gr.Row():
grad_accumulation_steps = gr.Number(label="Gradient Accumulation Steps", value=1)
max_grad_norm = gr.Number(label="Max Gradient Norm", value=1.0)
with gr.Row():
epochs = gr.Number(label="Epochs", value=10)
num_warmup_updates = gr.Number(label="Warmup Updates", value=5)
with gr.Row():
save_per_updates = gr.Number(label="Save per Updates", value=10)
last_per_steps = gr.Number(label="Last per Steps", value=50)
with gr.Row():
mixed_precision = gr.Radio(label="mixed_precision", choices=["none", "fp16", "fpb16"], value="none")
start_button = gr.Button("Start Training")
stop_button = gr.Button("Stop Training", interactive=False)
txt_info_train = gr.Text(label="info", value="")
start_button.click(
fn=start_training,
inputs=[
cm_project,
exp_name,
learning_rate,
batch_size_per_gpu,
batch_size_type,
max_samples,
grad_accumulation_steps,
max_grad_norm,
epochs,
num_warmup_updates,
save_per_updates,
last_per_steps,
ch_finetune,
file_checkpoint_train,
tokenizer_type,
tokenizer_file,
mixed_precision,
],
outputs=[txt_info_train, start_button, stop_button],
)
stop_button.click(fn=stop_training, outputs=[txt_info_train, start_button, stop_button])
bt_calculate.click(
fn=calculate_train,
inputs=[
cm_project,
batch_size_type,
max_samples,
learning_rate,
num_warmup_updates,
save_per_updates,
last_per_steps,
ch_finetune,
],
outputs=[
batch_size_per_gpu,
max_samples,
num_warmup_updates,
save_per_updates,
last_per_steps,
lb_samples,
learning_rate,
epochs,
],
)
ch_finetune.change(
check_finetune, inputs=[ch_finetune], outputs=[file_checkpoint_train, tokenizer_file, tokenizer_type]
)
with gr.TabItem("reduse checkpoint"):
txt_path_checkpoint = gr.Text(label="path checkpoint :")
txt_path_checkpoint_small = gr.Text(label="path output :")
ch_safetensors = gr.Checkbox(label="safetensors", value="")
txt_info_reduse = gr.Text(label="info", value="")
reduse_button = gr.Button("reduse")
reduse_button.click(
fn=extract_and_save_ema_model,
inputs=[txt_path_checkpoint, txt_path_checkpoint_small, ch_safetensors],
outputs=[txt_info_reduse],
)
with gr.TabItem("vocab check"):
check_button = gr.Button("check vocab")
txt_info_check = gr.Text(label="info", value="")
check_button.click(fn=vocab_check, inputs=[cm_project], outputs=[txt_info_check])
with gr.TabItem("test model"):
exp_name = gr.Radio(label="Model", choices=["F5-TTS", "E2-TTS"], value="F5-TTS")
list_checkpoints, checkpoint_select = get_checkpoints_project(projects_selelect, False)
nfe_step = gr.Number(label="n_step", value=32)
with gr.Row():
cm_checkpoint = gr.Dropdown(
choices=list_checkpoints, value=checkpoint_select, label="checkpoints", allow_custom_value=True
)
bt_checkpoint_refresh = gr.Button("refresh")
random_sample_infer = gr.Button("random sample")
ref_text = gr.Textbox(label="ref text")
ref_audio = gr.Audio(label="audio ref", type="filepath")
gen_text = gr.Textbox(label="gen text")
random_sample_infer.click(
fn=get_random_sample_infer, inputs=[cm_project], outputs=[ref_text, gen_text, ref_audio]
)
with gr.Row():
txt_info_gpu = gr.Textbox("", label="device")
check_button_infer = gr.Button("infer")
gen_audio = gr.Audio(label="audio gen", type="filepath")
check_button_infer.click(
fn=infer,
inputs=[cm_checkpoint, exp_name, ref_text, ref_audio, gen_text, nfe_step],
outputs=[gen_audio, txt_info_gpu],
)
bt_checkpoint_refresh.click(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
cm_project.change(fn=get_checkpoints_project, inputs=[cm_project], outputs=[cm_checkpoint])
with gr.TabItem("system info"):
output_box = gr.Textbox(label="GPU and CPU Information", lines=20)
def update_stats():
return get_combined_stats()
update_button = gr.Button("Update Stats")
update_button.click(fn=update_stats, outputs=output_box)
def auto_update():
yield gr.update(value=update_stats())
gr.update(fn=auto_update, inputs=[], outputs=output_box)
@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(
"--share",
"-s",
default=False,
is_flag=True,
help="Share the app via Gradio share link",
)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
def main(port, host, share, api):
global app
print("Starting app...")
app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api)
if __name__ == "__main__":
main()
|