blog_generation / app.py
YasirAbdali's picture
Update app.py
9ddd8ad verified
raw
history blame
1.38 kB
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import streamlit as st
# Load GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Streamlit app
st.title("Blog Post Generator")
# User input
topic = st.text_input("Enter a blog post topic:")
max_length = st.slider("Maximum length of generated text:", min_value=100, max_value=2000, value=500, step=50)
if topic:
# Construct a detailed prompt
prompt = f"""Write a well-formatted blog post about {topic}.
"""
# Tokenize input
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# Generate text
with torch.no_grad():
output = model.generate(
input_ids,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
temperature=0.7
)
# Decode and display generated text
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
st.subheader("Generated Blog Post:")
st.markdown(generated_text)
# Option to download the blog post
st.download_button(
label="Download Blog Post",
data=generated_text,
file_name="generated_blog_post.md",
mime="text/markdown"
)