Spaces:
Sleeping
Sleeping
File size: 1,380 Bytes
fdbdc93 3c97d9a 4ab991c fdbdc93 4ab991c fdbdc93 4d3bd41 4ab991c fdbdc93 888b62c 4d3bd41 9ddd8ad fdbdc93 888b62c fdbdc93 888b62c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import streamlit as st
# Load GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Streamlit app
st.title("Blog Post Generator")
# User input
topic = st.text_input("Enter a blog post topic:")
max_length = st.slider("Maximum length of generated text:", min_value=100, max_value=2000, value=500, step=50)
if topic:
# Construct a detailed prompt
prompt = f"""Write a well-formatted blog post about {topic}.
"""
# Tokenize input
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# Generate text
with torch.no_grad():
output = model.generate(
input_ids,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
temperature=0.7
)
# Decode and display generated text
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
st.subheader("Generated Blog Post:")
st.markdown(generated_text)
# Option to download the blog post
st.download_button(
label="Download Blog Post",
data=generated_text,
file_name="generated_blog_post.md",
mime="text/markdown"
) |