CHM-Corr / Utils.py
taesiri's picture
added CHM classification
d526dbf
import numpy as np
import torch
import torchvision.models as models
from numpy import matlib as mb
from PIL import Image
from torch.utils.data import Dataset
from torchvision.datasets import ImageFolder
import torchvision.transforms as transforms
from FeatureExtractors import resnet50_features
to_np = lambda x: x.data.to("cpu").numpy()
def compute_spatial_similarity(conv1, conv2):
"""
Takes in the last convolutional layer from two images, computes the pooled output
feature, and then generates the spatial similarity map for both images.
"""
conv1 = conv1.reshape(-1, 7 * 7).T
conv2 = conv2.reshape(-1, 7 * 7).T
pool1 = np.mean(conv1, axis=0)
pool2 = np.mean(conv2, axis=0)
out_sz = (int(np.sqrt(conv1.shape[0])), int(np.sqrt(conv1.shape[0])))
conv1_normed = conv1 / np.linalg.norm(pool1) / conv1.shape[0]
conv2_normed = conv2 / np.linalg.norm(pool2) / conv2.shape[0]
im_similarity = np.zeros((conv1_normed.shape[0], conv1_normed.shape[0]))
for zz in range(conv1_normed.shape[0]):
repPx = mb.repmat(conv1_normed[zz, :], conv1_normed.shape[0], 1)
im_similarity[zz, :] = np.multiply(repPx, conv2_normed).sum(axis=1)
similarity1 = np.reshape(np.sum(im_similarity, axis=1), out_sz)
similarity2 = np.reshape(np.sum(im_similarity, axis=0), out_sz)
return similarity1, similarity2
def normalize_array(x):
x = np.asarray(x).copy()
x -= np.min(x)
x /= np.max(x)
return x
def apply_threshold(x, t):
x = np.asarray(x).copy()
x[x < t] = 0
return x
def generate_mask(x, t):
v = np.zeros_like(x)
v[x >= t] = 1
return v
def get_transforms(args_transform, chm_args):
# TRANSFORMS
cosine_transform_target = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
chm_transform_target = transforms.Compose(
[
transforms.Resize(chm_args["img_size"]),
transforms.CenterCrop((chm_args["img_size"], chm_args["img_size"])),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
if args_transform == "multi":
cosine_transform_source = transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
chm_transform_source = transforms.Compose(
[
transforms.Resize((chm_args["img_size"], chm_args["img_size"])),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
elif args_transform == "single":
cosine_transform_source = transforms.Compose(
[
transforms.Resize(chm_args["img_size"]),
transforms.CenterCrop((chm_args["img_size"], chm_args["img_size"])),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
chm_transform_source = transforms.Compose(
[
transforms.Resize(chm_args["img_size"]),
transforms.CenterCrop((chm_args["img_size"], chm_args["img_size"])),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
return (
chm_transform_source,
chm_transform_target,
cosine_transform_source,
cosine_transform_target,
)
def clamp(x, min_value, max_value):
return max(min_value, min(x, max_value))
def keep_top5(input_array, K=5):
top_5 = np.sort(input_array.reshape(-1))[::-1][K - 1]
masked = np.zeros_like(input_array)
masked[input_array >= top_5] = 1
return masked
def arg_topK(input_array, topK=5):
return np.argsort(input_array.T.reshape(-1))[::-1][:topK]
class KNNSupportSet:
def __init__(self, train_folder, val_folder, knn_scores, custom_val_labels=None):
self.train_data = ImageFolder(root=train_folder)
self.val_data = ImageFolder(root=val_folder)
self.knn_scores = knn_scores
if custom_val_labels is None:
self.val_labels = np.asarray([x[1] for x in self.val_data.imgs])
else:
self.val_labels = custom_val_labels
self.train_labels = np.asarray([x[1] for x in self.train_data.imgs])
def get_knn_predictions(self, k=20):
knn_predictions = [
np.argmax(np.bincount(self.train_labels[self.knn_scores[I][::-1][:k]]))
for I in range(len(self.knn_scores))
]
knn_accuracy = (
100
* np.sum((np.asarray(knn_predictions) == self.val_labels))
/ len(self.val_labels)
)
return knn_predictions, knn_accuracy
def get_support_set(self, selected_index, top_N=20):
support_set = self.knn_scores[selected_index][-top_N:][::-1]
return [self.train_data.imgs[x][0] for x in support_set]
def get_support_set_labels(self, selected_index, top_N=20):
support_set = self.knn_scores[selected_index][-top_N:][::-1]
return [self.train_data.imgs[x][1] for x in support_set]
def get_image_and_label_by_id(self, q_id):
q = self.val_data.imgs[q_id][0]
ql = self.val_data.imgs[q_id][1]
return (q, ql)
def get_folder_name(self, q_id):
q = self.val_data.imgs[q_id][0]
return q.split("/")[-2]
def get_top5_knn(self, query_id, k=20):
knn_pred, knn_acc = self.get_knn_predictions(k=k)
top_5s_index = np.where(
np.equal(
self.train_labels[self.knn_scores[query_id][::-1]], knn_pred[query_id]
)
)[0][:5]
top_5s = self.knn_scores[query_id][::-1][top_5s_index]
top_5s_files = [self.train_data.imgs[x][0] for x in top_5s]
return top_5s_files
def get_topK_knn(self, query_id, k=20):
knn_pred, knn_acc = self.get_knn_predictions(k=k)
top_ks_index = np.where(
np.equal(
self.train_labels[self.knn_scores[query_id][::-1]], knn_pred[query_id]
)
)[0][:k]
top_ks = self.knn_scores[query_id][::-1][top_ks_index]
top_ks_files = [self.train_data.imgs[x][0] for x in top_ks]
return top_ks_files
def get_foldername_for_label(self, label):
for i in range(len(self.train_data)):
if self.train_data.imgs[i][1] == label:
return self.train_data.imgs[i][0].split("/")[-2]
def get_knn_confidence(self, query_id, k=20):
return np.max(
np.bincount(self.train_labels[self.knn_scores[query_id][::-1][:k]])
)
class CosineCustomDataset(Dataset):
r"""Parent class of PFPascal, PFWillow, and SPair"""
def __init__(self, query_image, supporting_set, source_transform, target_transform):
r"""XAICustomDataset constructor"""
super(CosineCustomDataset, self).__init__()
self.supporting_set = supporting_set
self.query_image = [query_image] * len(supporting_set)
self.source_transform = source_transform
self.target_transform = target_transform
def __len__(self):
r"""Returns the number of pairs"""
return len(self.supporting_set)
def __getitem__(self, idx):
r"""Constructs and return a batch"""
# Image name
batch = dict()
batch["src_imname"] = self.query_image[idx]
batch["trg_imname"] = self.supporting_set[idx]
# Image as numpy (original width, original height)
src_pil = self.get_image(self.query_image, idx)
trg_pil = self.get_image(self.supporting_set, idx)
batch["src_imsize"] = src_pil.size
batch["trg_imsize"] = trg_pil.size
# Image as tensor
batch["src_img"] = self.source_transform(src_pil)
batch["trg_img"] = self.target_transform(trg_pil)
# Total number of pairs in training split
batch["datalen"] = len(self.query_image)
return batch
def get_image(self, image_pathes, idx):
r"""Reads PIL image from path"""
path = image_pathes[idx]
return Image.open(path).convert("RGB")
class PairedLayer4Extractor(torch.nn.Module):
"""
Extracting layer-4 embedding for source and target images using ResNet-50 features
"""
def __init__(self):
super(PairedLayer4Extractor, self).__init__()
self.modelA = models.resnet50(pretrained=True)
self.modelA.eval()
self.modelB = models.resnet50(pretrained=True)
self.modelB.eval()
self.a_embeddings = None
self.b_embeddings = None
def a_hook(module, input, output):
self.a_embeddings = output
def b_hook(module, input, output):
self.b_embeddings = output
self.modelA._modules.get("layer4").register_forward_hook(a_hook)
self.modelB._modules.get("layer4").register_forward_hook(b_hook)
def forward(self, inputs):
inputA, inputB = inputs
self.modelA(inputA)
self.modelB(inputB)
return self.a_embeddings, self.b_embeddings
def __repr__(self):
return "PairedLayer4Extractor"
class iNaturalistPairedLayer4Extractor(torch.nn.Module):
"""
Extracting layer-4 embedding for source and target images using iNaturalist ResNet-50 features
"""
def __init__(self):
super(iNaturalistPairedLayer4Extractor, self).__init__()
self.modelA = resnet50_features(inat=True, pretrained=True)
self.modelA.eval()
self.modelB = resnet50_features(inat=True, pretrained=True)
self.modelB.eval()
self.source_embedding = None
self.target_embedding = None
def forward(self, inputs):
source_image, target_image = inputs
self.source_embedding = self.modelA(source_image)
self.target_embedding = self.modelB(target_image)
return self.source_embedding, self.target_embedding
def __repr__(self):
return "iNatPairedLayer4Extractor"