File size: 10,510 Bytes
d526dbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import numpy as np
import torch
import torchvision.models as models
from numpy import matlib as mb
from PIL import Image
from torch.utils.data import Dataset
from torchvision.datasets import ImageFolder
import torchvision.transforms as transforms
from FeatureExtractors import resnet50_features

to_np = lambda x: x.data.to("cpu").numpy()


def compute_spatial_similarity(conv1, conv2):
    """
    Takes in the last convolutional layer from two images, computes the pooled output
    feature, and then generates the spatial similarity map for both images.
    """
    conv1 = conv1.reshape(-1, 7 * 7).T
    conv2 = conv2.reshape(-1, 7 * 7).T

    pool1 = np.mean(conv1, axis=0)
    pool2 = np.mean(conv2, axis=0)
    out_sz = (int(np.sqrt(conv1.shape[0])), int(np.sqrt(conv1.shape[0])))
    conv1_normed = conv1 / np.linalg.norm(pool1) / conv1.shape[0]
    conv2_normed = conv2 / np.linalg.norm(pool2) / conv2.shape[0]
    im_similarity = np.zeros((conv1_normed.shape[0], conv1_normed.shape[0]))

    for zz in range(conv1_normed.shape[0]):
        repPx = mb.repmat(conv1_normed[zz, :], conv1_normed.shape[0], 1)
        im_similarity[zz, :] = np.multiply(repPx, conv2_normed).sum(axis=1)
    similarity1 = np.reshape(np.sum(im_similarity, axis=1), out_sz)
    similarity2 = np.reshape(np.sum(im_similarity, axis=0), out_sz)
    return similarity1, similarity2


def normalize_array(x):
    x = np.asarray(x).copy()
    x -= np.min(x)
    x /= np.max(x)
    return x


def apply_threshold(x, t):
    x = np.asarray(x).copy()
    x[x < t] = 0
    return x


def generate_mask(x, t):
    v = np.zeros_like(x)
    v[x >= t] = 1
    return v


def get_transforms(args_transform, chm_args):
    # TRANSFORMS
    cosine_transform_target = transforms.Compose(
        [
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )

    chm_transform_target = transforms.Compose(
        [
            transforms.Resize(chm_args["img_size"]),
            transforms.CenterCrop((chm_args["img_size"], chm_args["img_size"])),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ]
    )

    if args_transform == "multi":
        cosine_transform_source = transforms.Compose(
            [
                transforms.Resize((224, 224)),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
            ]
        )

        chm_transform_source = transforms.Compose(
            [
                transforms.Resize((chm_args["img_size"], chm_args["img_size"])),
                transforms.ToTensor(),
                transforms.Normalize(
                    mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                ),
            ]
        )

    elif args_transform == "single":
        cosine_transform_source = transforms.Compose(
            [
                transforms.Resize(chm_args["img_size"]),
                transforms.CenterCrop((chm_args["img_size"], chm_args["img_size"])),
                transforms.Resize((224, 224)),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
            ]
        )

        chm_transform_source = transforms.Compose(
            [
                transforms.Resize(chm_args["img_size"]),
                transforms.CenterCrop((chm_args["img_size"], chm_args["img_size"])),
                transforms.ToTensor(),
                transforms.Normalize(
                    mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                ),
            ]
        )

    return (
        chm_transform_source,
        chm_transform_target,
        cosine_transform_source,
        cosine_transform_target,
    )


def clamp(x, min_value, max_value):
    return max(min_value, min(x, max_value))


def keep_top5(input_array, K=5):
    top_5 = np.sort(input_array.reshape(-1))[::-1][K - 1]
    masked = np.zeros_like(input_array)
    masked[input_array >= top_5] = 1
    return masked


def arg_topK(input_array, topK=5):
    return np.argsort(input_array.T.reshape(-1))[::-1][:topK]


class KNNSupportSet:
    def __init__(self, train_folder, val_folder, knn_scores, custom_val_labels=None):
        self.train_data = ImageFolder(root=train_folder)
        self.val_data = ImageFolder(root=val_folder)
        self.knn_scores = knn_scores

        if custom_val_labels is None:
            self.val_labels = np.asarray([x[1] for x in self.val_data.imgs])
        else:
            self.val_labels = custom_val_labels

        self.train_labels = np.asarray([x[1] for x in self.train_data.imgs])

    def get_knn_predictions(self, k=20):
        knn_predictions = [
            np.argmax(np.bincount(self.train_labels[self.knn_scores[I][::-1][:k]]))
            for I in range(len(self.knn_scores))
        ]
        knn_accuracy = (
            100
            * np.sum((np.asarray(knn_predictions) == self.val_labels))
            / len(self.val_labels)
        )
        return knn_predictions, knn_accuracy

    def get_support_set(self, selected_index, top_N=20):
        support_set = self.knn_scores[selected_index][-top_N:][::-1]
        return [self.train_data.imgs[x][0] for x in support_set]

    def get_support_set_labels(self, selected_index, top_N=20):
        support_set = self.knn_scores[selected_index][-top_N:][::-1]
        return [self.train_data.imgs[x][1] for x in support_set]

    def get_image_and_label_by_id(self, q_id):
        q = self.val_data.imgs[q_id][0]
        ql = self.val_data.imgs[q_id][1]
        return (q, ql)

    def get_folder_name(self, q_id):
        q = self.val_data.imgs[q_id][0]
        return q.split("/")[-2]

    def get_top5_knn(self, query_id, k=20):
        knn_pred, knn_acc = self.get_knn_predictions(k=k)
        top_5s_index = np.where(
            np.equal(
                self.train_labels[self.knn_scores[query_id][::-1]], knn_pred[query_id]
            )
        )[0][:5]
        top_5s = self.knn_scores[query_id][::-1][top_5s_index]
        top_5s_files = [self.train_data.imgs[x][0] for x in top_5s]
        return top_5s_files

    def get_topK_knn(self, query_id, k=20):
        knn_pred, knn_acc = self.get_knn_predictions(k=k)
        top_ks_index = np.where(
            np.equal(
                self.train_labels[self.knn_scores[query_id][::-1]], knn_pred[query_id]
            )
        )[0][:k]
        top_ks = self.knn_scores[query_id][::-1][top_ks_index]
        top_ks_files = [self.train_data.imgs[x][0] for x in top_ks]
        return top_ks_files

    def get_foldername_for_label(self, label):
        for i in range(len(self.train_data)):
            if self.train_data.imgs[i][1] == label:
                return self.train_data.imgs[i][0].split("/")[-2]

    def get_knn_confidence(self, query_id, k=20):
        return np.max(
            np.bincount(self.train_labels[self.knn_scores[query_id][::-1][:k]])
        )


class CosineCustomDataset(Dataset):
    r"""Parent class of PFPascal, PFWillow, and SPair"""

    def __init__(self, query_image, supporting_set, source_transform, target_transform):
        r"""XAICustomDataset constructor"""
        super(CosineCustomDataset, self).__init__()

        self.supporting_set = supporting_set
        self.query_image = [query_image] * len(supporting_set)

        self.source_transform = source_transform
        self.target_transform = target_transform

    def __len__(self):
        r"""Returns the number of pairs"""
        return len(self.supporting_set)

    def __getitem__(self, idx):
        r"""Constructs and return a batch"""

        # Image name
        batch = dict()
        batch["src_imname"] = self.query_image[idx]
        batch["trg_imname"] = self.supporting_set[idx]

        # Image as numpy (original width, original height)
        src_pil = self.get_image(self.query_image, idx)
        trg_pil = self.get_image(self.supporting_set, idx)

        batch["src_imsize"] = src_pil.size
        batch["trg_imsize"] = trg_pil.size

        # Image as tensor
        batch["src_img"] = self.source_transform(src_pil)
        batch["trg_img"] = self.target_transform(trg_pil)

        # Total number of pairs in training split
        batch["datalen"] = len(self.query_image)
        return batch

    def get_image(self, image_pathes, idx):
        r"""Reads PIL image from path"""
        path = image_pathes[idx]
        return Image.open(path).convert("RGB")


class PairedLayer4Extractor(torch.nn.Module):
    """
    Extracting layer-4 embedding for source and target images using ResNet-50 features
    """

    def __init__(self):
        super(PairedLayer4Extractor, self).__init__()

        self.modelA = models.resnet50(pretrained=True)
        self.modelA.eval()

        self.modelB = models.resnet50(pretrained=True)
        self.modelB.eval()

        self.a_embeddings = None
        self.b_embeddings = None

        def a_hook(module, input, output):
            self.a_embeddings = output

        def b_hook(module, input, output):
            self.b_embeddings = output

        self.modelA._modules.get("layer4").register_forward_hook(a_hook)
        self.modelB._modules.get("layer4").register_forward_hook(b_hook)

    def forward(self, inputs):
        inputA, inputB = inputs
        self.modelA(inputA)
        self.modelB(inputB)

        return self.a_embeddings, self.b_embeddings

    def __repr__(self):
        return "PairedLayer4Extractor"


class iNaturalistPairedLayer4Extractor(torch.nn.Module):
    """
    Extracting layer-4 embedding for source and target images using iNaturalist ResNet-50 features
    """

    def __init__(self):
        super(iNaturalistPairedLayer4Extractor, self).__init__()

        self.modelA = resnet50_features(inat=True, pretrained=True)
        self.modelA.eval()

        self.modelB = resnet50_features(inat=True, pretrained=True)
        self.modelB.eval()

        self.source_embedding = None
        self.target_embedding = None

    def forward(self, inputs):
        source_image, target_image = inputs
        self.source_embedding = self.modelA(source_image)
        self.target_embedding = self.modelB(target_image)

        return self.source_embedding, self.target_embedding

    def __repr__(self):
        return "iNatPairedLayer4Extractor"