Spaces:
Paused
Paused
import cv2 | |
import numpy as np | |
from annotator.util import HWC3 | |
from typing import Callable, Tuple | |
def pad64(x): | |
return int(np.ceil(float(x) / 64.0) * 64 - x) | |
def safer_memory(x): | |
# Fix many MAC/AMD problems | |
return np.ascontiguousarray(x.copy()).copy() | |
def resize_image_with_pad(input_image, resolution, skip_hwc3=False): | |
if skip_hwc3: | |
img = input_image | |
else: | |
img = HWC3(input_image) | |
H_raw, W_raw, _ = img.shape | |
k = float(resolution) / float(min(H_raw, W_raw)) | |
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA | |
H_target = int(np.round(float(H_raw) * k)) | |
W_target = int(np.round(float(W_raw) * k)) | |
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation) | |
H_pad, W_pad = pad64(H_target), pad64(W_target) | |
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge') | |
def remove_pad(x): | |
return safer_memory(x[:H_target, :W_target]) | |
return safer_memory(img_padded), remove_pad | |
model_canny = None | |
def canny(img, res=512, thr_a=100, thr_b=200, **kwargs): | |
l, h = thr_a, thr_b | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_canny | |
if model_canny is None: | |
from annotator.canny import apply_canny | |
model_canny = apply_canny | |
result = model_canny(img, l, h) | |
return remove_pad(result), True | |
def scribble_thr(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
result = np.zeros_like(img, dtype=np.uint8) | |
result[np.min(img, axis=2) < 127] = 255 | |
return remove_pad(result), True | |
def scribble_xdog(img, res=512, thr_a=32, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5) | |
g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0) | |
dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8) | |
result = np.zeros_like(img, dtype=np.uint8) | |
result[2 * (255 - dog) > thr_a] = 255 | |
return remove_pad(result), True | |
def tile_resample(img, res=512, thr_a=1.0, **kwargs): | |
img = HWC3(img) | |
if thr_a < 1.1: | |
return img, True | |
H, W, C = img.shape | |
H = int(float(H) / float(thr_a)) | |
W = int(float(W) / float(thr_a)) | |
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA) | |
return img, True | |
def threshold(img, res=512, thr_a=127, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
result = np.zeros_like(img, dtype=np.uint8) | |
result[np.min(img, axis=2) > thr_a] = 255 | |
return remove_pad(result), True | |
def identity(img, **kwargs): | |
return img, True | |
def invert(img, res=512, **kwargs): | |
return 255 - HWC3(img), True | |
model_hed = None | |
def hed(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_hed | |
if model_hed is None: | |
from annotator.hed import apply_hed | |
model_hed = apply_hed | |
result = model_hed(img) | |
return remove_pad(result), True | |
def hed_safe(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_hed | |
if model_hed is None: | |
from annotator.hed import apply_hed | |
model_hed = apply_hed | |
result = model_hed(img, is_safe=True) | |
return remove_pad(result), True | |
def unload_hed(): | |
global model_hed | |
if model_hed is not None: | |
from annotator.hed import unload_hed_model | |
unload_hed_model() | |
def scribble_hed(img, res=512, **kwargs): | |
result, _ = hed(img, res) | |
import cv2 | |
from annotator.util import nms | |
result = nms(result, 127, 3.0) | |
result = cv2.GaussianBlur(result, (0, 0), 3.0) | |
result[result > 4] = 255 | |
result[result < 255] = 0 | |
return result, True | |
model_mediapipe_face = None | |
def mediapipe_face(img, res=512, thr_a: int = 10, thr_b: float = 0.5, **kwargs): | |
max_faces = int(thr_a) | |
min_confidence = thr_b | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_mediapipe_face | |
if model_mediapipe_face is None: | |
from annotator.mediapipe_face import apply_mediapipe_face | |
model_mediapipe_face = apply_mediapipe_face | |
result = model_mediapipe_face(img, max_faces=max_faces, min_confidence=min_confidence) | |
return remove_pad(result), True | |
model_mlsd = None | |
def mlsd(img, res=512, thr_a=0.1, thr_b=0.1, **kwargs): | |
thr_v, thr_d = thr_a, thr_b | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_mlsd | |
if model_mlsd is None: | |
from annotator.mlsd import apply_mlsd | |
model_mlsd = apply_mlsd | |
result = model_mlsd(img, thr_v, thr_d) | |
return remove_pad(result), True | |
def unload_mlsd(): | |
global model_mlsd | |
if model_mlsd is not None: | |
from annotator.mlsd import unload_mlsd_model | |
unload_mlsd_model() | |
model_midas = None | |
def midas(img, res=512, a=np.pi * 2.0, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_midas | |
if model_midas is None: | |
from annotator.midas import apply_midas | |
model_midas = apply_midas | |
result, _ = model_midas(img, a) | |
return remove_pad(result), True | |
def midas_normal(img, res=512, a=np.pi * 2.0, thr_a=0.4, **kwargs): # bg_th -> thr_a | |
bg_th = thr_a | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_midas | |
if model_midas is None: | |
from annotator.midas import apply_midas | |
model_midas = apply_midas | |
_, result = model_midas(img, a, bg_th) | |
return remove_pad(result), True | |
def unload_midas(): | |
global model_midas | |
if model_midas is not None: | |
from annotator.midas import unload_midas_model | |
unload_midas_model() | |
model_leres = None | |
def leres(img, res=512, a=np.pi * 2.0, thr_a=0, thr_b=0, boost=False, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_leres | |
if model_leres is None: | |
from annotator.leres import apply_leres | |
model_leres = apply_leres | |
result = model_leres(img, thr_a, thr_b, boost=boost) | |
return remove_pad(result), True | |
def unload_leres(): | |
global model_leres | |
if model_leres is not None: | |
from annotator.leres import unload_leres_model | |
unload_leres_model() | |
class OpenposeModel(object): | |
def __init__(self) -> None: | |
self.model_openpose = None | |
def run_model( | |
self, | |
img: np.ndarray, | |
include_body: bool, | |
include_hand: bool, | |
include_face: bool, | |
use_dw_pose: bool = False, | |
json_pose_callback: Callable[[str], None] = None, | |
res: int = 512, | |
**kwargs # Ignore rest of kwargs | |
) -> Tuple[np.ndarray, bool]: | |
"""Run the openpose model. Returns a tuple of | |
- result image | |
- is_image flag | |
The JSON format pose string is passed to `json_pose_callback`. | |
""" | |
if json_pose_callback is None: | |
json_pose_callback = lambda x: None | |
img, remove_pad = resize_image_with_pad(img, res) | |
if self.model_openpose is None: | |
from annotator.openpose import OpenposeDetector | |
self.model_openpose = OpenposeDetector() | |
return remove_pad(self.model_openpose( | |
img, | |
include_body=include_body, | |
include_hand=include_hand, | |
include_face=include_face, | |
use_dw_pose=use_dw_pose, | |
json_pose_callback=json_pose_callback | |
)), True | |
def unload(self): | |
if self.model_openpose is not None: | |
self.model_openpose.unload_model() | |
g_openpose_model = OpenposeModel() | |
model_uniformer = None | |
def uniformer(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_uniformer | |
if model_uniformer is None: | |
from annotator.uniformer import apply_uniformer | |
model_uniformer = apply_uniformer | |
result = model_uniformer(img) | |
return remove_pad(result), True | |
def unload_uniformer(): | |
global model_uniformer | |
if model_uniformer is not None: | |
from annotator.uniformer import unload_uniformer_model | |
unload_uniformer_model() | |
model_pidinet = None | |
def pidinet(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_pidinet | |
if model_pidinet is None: | |
from annotator.pidinet import apply_pidinet | |
model_pidinet = apply_pidinet | |
result = model_pidinet(img) | |
return remove_pad(result), True | |
def pidinet_ts(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_pidinet | |
if model_pidinet is None: | |
from annotator.pidinet import apply_pidinet | |
model_pidinet = apply_pidinet | |
result = model_pidinet(img, apply_fliter=True) | |
return remove_pad(result), True | |
def pidinet_safe(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_pidinet | |
if model_pidinet is None: | |
from annotator.pidinet import apply_pidinet | |
model_pidinet = apply_pidinet | |
result = model_pidinet(img, is_safe=True) | |
return remove_pad(result), True | |
def scribble_pidinet(img, res=512, **kwargs): | |
result, _ = pidinet(img, res) | |
import cv2 | |
from annotator.util import nms | |
result = nms(result, 127, 3.0) | |
result = cv2.GaussianBlur(result, (0, 0), 3.0) | |
result[result > 4] = 255 | |
result[result < 255] = 0 | |
return result, True | |
def unload_pidinet(): | |
global model_pidinet | |
if model_pidinet is not None: | |
from annotator.pidinet import unload_pid_model | |
unload_pid_model() | |
clip_encoder = { | |
'clip_g': None, | |
'clip_h': None, | |
'clip_vitl': None, | |
} | |
def clip(img, res=512, config='clip_vitl', **kwargs): | |
img = HWC3(img) | |
global clip_encoder | |
if clip_encoder[config] is None: | |
from annotator.clipvision import ClipVisionDetector | |
clip_encoder[config] = ClipVisionDetector(config) | |
result = clip_encoder[config](img) | |
return result, False | |
def unload_clip(config='clip_vitl'): | |
global clip_encoder | |
if clip_encoder[config] is not None: | |
clip_encoder[config].unload_model() | |
clip_encoder[config] = None | |
model_color = None | |
def color(img, res=512, **kwargs): | |
img = HWC3(img) | |
global model_color | |
if model_color is None: | |
from annotator.color import apply_color | |
model_color = apply_color | |
result = model_color(img, res=res) | |
return result, True | |
def lineart_standard(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
x = img.astype(np.float32) | |
g = cv2.GaussianBlur(x, (0, 0), 6.0) | |
intensity = np.min(g - x, axis=2).clip(0, 255) | |
intensity /= max(16, np.median(intensity[intensity > 8])) | |
intensity *= 127 | |
result = intensity.clip(0, 255).astype(np.uint8) | |
return remove_pad(result), True | |
model_lineart = None | |
def lineart(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_lineart | |
if model_lineart is None: | |
from annotator.lineart import LineartDetector | |
model_lineart = LineartDetector(LineartDetector.model_default) | |
# applied auto inversion | |
result = 255 - model_lineart(img) | |
return remove_pad(result), True | |
def unload_lineart(): | |
global model_lineart | |
if model_lineart is not None: | |
model_lineart.unload_model() | |
model_lineart_coarse = None | |
def lineart_coarse(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_lineart_coarse | |
if model_lineart_coarse is None: | |
from annotator.lineart import LineartDetector | |
model_lineart_coarse = LineartDetector(LineartDetector.model_coarse) | |
# applied auto inversion | |
result = 255 - model_lineart_coarse(img) | |
return remove_pad(result), True | |
def unload_lineart_coarse(): | |
global model_lineart_coarse | |
if model_lineart_coarse is not None: | |
model_lineart_coarse.unload_model() | |
model_lineart_anime = None | |
def lineart_anime(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_lineart_anime | |
if model_lineart_anime is None: | |
from annotator.lineart_anime import LineartAnimeDetector | |
model_lineart_anime = LineartAnimeDetector() | |
# applied auto inversion | |
result = 255 - model_lineart_anime(img) | |
return remove_pad(result), True | |
def unload_lineart_anime(): | |
global model_lineart_anime | |
if model_lineart_anime is not None: | |
model_lineart_anime.unload_model() | |
model_manga_line = None | |
def lineart_anime_denoise(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_manga_line | |
if model_manga_line is None: | |
from annotator.manga_line import MangaLineExtration | |
model_manga_line = MangaLineExtration() | |
# applied auto inversion | |
result = model_manga_line(img) | |
return remove_pad(result), True | |
def unload_lineart_anime_denoise(): | |
global model_manga_line | |
if model_manga_line is not None: | |
model_manga_line.unload_model() | |
model_lama = None | |
def lama_inpaint(img, res=512, **kwargs): | |
H, W, C = img.shape | |
raw_color = img[:, :, 0:3].copy() | |
raw_mask = img[:, :, 3:4].copy() | |
res = 256 # Always use 256 since lama is trained on 256 | |
img_res, remove_pad = resize_image_with_pad(img, res, skip_hwc3=True) | |
global model_lama | |
if model_lama is None: | |
from annotator.lama import LamaInpainting | |
model_lama = LamaInpainting() | |
# applied auto inversion | |
prd_color = model_lama(img_res) | |
prd_color = remove_pad(prd_color) | |
prd_color = cv2.resize(prd_color, (W, H)) | |
alpha = raw_mask.astype(np.float32) / 255.0 | |
fin_color = prd_color.astype(np.float32) * alpha + raw_color.astype(np.float32) * (1 - alpha) | |
fin_color = fin_color.clip(0, 255).astype(np.uint8) | |
result = np.concatenate([fin_color, raw_mask], axis=2) | |
return result, True | |
def unload_lama_inpaint(): | |
global model_lama | |
if model_lama is not None: | |
model_lama.unload_model() | |
model_zoe_depth = None | |
def zoe_depth(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_zoe_depth | |
if model_zoe_depth is None: | |
from annotator.zoe import ZoeDetector | |
model_zoe_depth = ZoeDetector() | |
result = model_zoe_depth(img) | |
return remove_pad(result), True | |
def unload_zoe_depth(): | |
global model_zoe_depth | |
if model_zoe_depth is not None: | |
model_zoe_depth.unload_model() | |
model_normal_bae = None | |
def normal_bae(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_normal_bae | |
if model_normal_bae is None: | |
from annotator.normalbae import NormalBaeDetector | |
model_normal_bae = NormalBaeDetector() | |
result = model_normal_bae(img) | |
return remove_pad(result), True | |
def unload_normal_bae(): | |
global model_normal_bae | |
if model_normal_bae is not None: | |
model_normal_bae.unload_model() | |
model_oneformer_coco = None | |
def oneformer_coco(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_oneformer_coco | |
if model_oneformer_coco is None: | |
from annotator.oneformer import OneformerDetector | |
model_oneformer_coco = OneformerDetector(OneformerDetector.configs["coco"]) | |
result = model_oneformer_coco(img) | |
return remove_pad(result), True | |
def unload_oneformer_coco(): | |
global model_oneformer_coco | |
if model_oneformer_coco is not None: | |
model_oneformer_coco.unload_model() | |
model_oneformer_ade20k = None | |
def oneformer_ade20k(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
global model_oneformer_ade20k | |
if model_oneformer_ade20k is None: | |
from annotator.oneformer import OneformerDetector | |
model_oneformer_ade20k = OneformerDetector(OneformerDetector.configs["ade20k"]) | |
result = model_oneformer_ade20k(img) | |
return remove_pad(result), True | |
def unload_oneformer_ade20k(): | |
global model_oneformer_ade20k | |
if model_oneformer_ade20k is not None: | |
model_oneformer_ade20k.unload_model() | |
model_shuffle = None | |
def shuffle(img, res=512, **kwargs): | |
img, remove_pad = resize_image_with_pad(img, res) | |
img = remove_pad(img) | |
global model_shuffle | |
if model_shuffle is None: | |
from annotator.shuffle import ContentShuffleDetector | |
model_shuffle = ContentShuffleDetector() | |
result = model_shuffle(img) | |
return result, True | |
def recolor_luminance(img, res=512, thr_a=1.0, **kwargs): | |
result = cv2.cvtColor(HWC3(img), cv2.COLOR_BGR2LAB) | |
result = result[:, :, 0].astype(np.float32) / 255.0 | |
result = result ** thr_a | |
result = (result * 255.0).clip(0, 255).astype(np.uint8) | |
result = cv2.cvtColor(result, cv2.COLOR_GRAY2RGB) | |
return result, True | |
def recolor_intensity(img, res=512, thr_a=1.0, **kwargs): | |
result = cv2.cvtColor(HWC3(img), cv2.COLOR_BGR2HSV) | |
result = result[:, :, 2].astype(np.float32) / 255.0 | |
result = result ** thr_a | |
result = (result * 255.0).clip(0, 255).astype(np.uint8) | |
result = cv2.cvtColor(result, cv2.COLOR_GRAY2RGB) | |
return result, True | |
model_free_preprocessors = [ | |
"reference_only", | |
"reference_adain", | |
"reference_adain+attn", | |
"revision_clipvision", | |
"revision_ignore_prompt" | |
] | |
no_control_mode_preprocessors = [ | |
"revision_clipvision", | |
"revision_ignore_prompt", | |
"clip_vision", | |
"ip-adapter_clip_sd15", | |
"ip-adapter_clip_sdxl", | |
"t2ia_style_clipvision" | |
] | |
flag_preprocessor_resolution = "Preprocessor Resolution" | |
preprocessor_sliders_config = { | |
"none": [], | |
"inpaint": [], | |
"inpaint_only": [], | |
"revision_clipvision": [ | |
None, | |
{ | |
"name": "Noise Augmentation", | |
"value": 0.0, | |
"min": 0.0, | |
"max": 1.0 | |
}, | |
], | |
"revision_ignore_prompt": [ | |
None, | |
{ | |
"name": "Noise Augmentation", | |
"value": 0.0, | |
"min": 0.0, | |
"max": 1.0 | |
}, | |
], | |
"canny": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"value": 512, | |
"min": 64, | |
"max": 2048 | |
}, | |
{ | |
"name": "Canny Low Threshold", | |
"value": 100, | |
"min": 1, | |
"max": 255 | |
}, | |
{ | |
"name": "Canny High Threshold", | |
"value": 200, | |
"min": 1, | |
"max": 255 | |
}, | |
], | |
"mlsd": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"min": 64, | |
"max": 2048, | |
"value": 512 | |
}, | |
{ | |
"name": "MLSD Value Threshold", | |
"min": 0.01, | |
"max": 2.0, | |
"value": 0.1, | |
"step": 0.01 | |
}, | |
{ | |
"name": "MLSD Distance Threshold", | |
"min": 0.01, | |
"max": 20.0, | |
"value": 0.1, | |
"step": 0.01 | |
} | |
], | |
"hed": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"min": 64, | |
"max": 2048, | |
"value": 512 | |
} | |
], | |
"scribble_hed": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"min": 64, | |
"max": 2048, | |
"value": 512 | |
} | |
], | |
"hed_safe": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"min": 64, | |
"max": 2048, | |
"value": 512 | |
} | |
], | |
"openpose": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"min": 64, | |
"max": 2048, | |
"value": 512 | |
} | |
], | |
"openpose_full": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"min": 64, | |
"max": 2048, | |
"value": 512 | |
} | |
], | |
"dw_openpose_full": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"min": 64, | |
"max": 2048, | |
"value": 512 | |
} | |
], | |
"segmentation": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"min": 64, | |
"max": 2048, | |
"value": 512 | |
} | |
], | |
"depth": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"min": 64, | |
"max": 2048, | |
"value": 512 | |
} | |
], | |
"depth_leres": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"min": 64, | |
"max": 2048, | |
"value": 512 | |
}, | |
{ | |
"name": "Remove Near %", | |
"min": 0, | |
"max": 100, | |
"value": 0, | |
"step": 0.1, | |
}, | |
{ | |
"name": "Remove Background %", | |
"min": 0, | |
"max": 100, | |
"value": 0, | |
"step": 0.1, | |
} | |
], | |
"depth_leres++": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"min": 64, | |
"max": 2048, | |
"value": 512 | |
}, | |
{ | |
"name": "Remove Near %", | |
"min": 0, | |
"max": 100, | |
"value": 0, | |
"step": 0.1, | |
}, | |
{ | |
"name": "Remove Background %", | |
"min": 0, | |
"max": 100, | |
"value": 0, | |
"step": 0.1, | |
} | |
], | |
"normal_map": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"min": 64, | |
"max": 2048, | |
"value": 512 | |
}, | |
{ | |
"name": "Normal Background Threshold", | |
"min": 0.0, | |
"max": 1.0, | |
"value": 0.4, | |
"step": 0.01 | |
} | |
], | |
"threshold": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"value": 512, | |
"min": 64, | |
"max": 2048 | |
}, | |
{ | |
"name": "Binarization Threshold", | |
"min": 0, | |
"max": 255, | |
"value": 127 | |
} | |
], | |
"scribble_xdog": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"value": 512, | |
"min": 64, | |
"max": 2048 | |
}, | |
{ | |
"name": "XDoG Threshold", | |
"min": 1, | |
"max": 64, | |
"value": 32, | |
} | |
], | |
"tile_resample": [ | |
None, | |
{ | |
"name": "Down Sampling Rate", | |
"value": 1.0, | |
"min": 1.0, | |
"max": 8.0, | |
"step": 0.01 | |
} | |
], | |
"tile_colorfix": [ | |
None, | |
{ | |
"name": "Variation", | |
"value": 8.0, | |
"min": 3.0, | |
"max": 32.0, | |
"step": 1.0 | |
} | |
], | |
"tile_colorfix+sharp": [ | |
None, | |
{ | |
"name": "Variation", | |
"value": 8.0, | |
"min": 3.0, | |
"max": 32.0, | |
"step": 1.0 | |
}, | |
{ | |
"name": "Sharpness", | |
"value": 1.0, | |
"min": 0.0, | |
"max": 2.0, | |
"step": 0.01 | |
} | |
], | |
"reference_only": [ | |
None, | |
{ | |
"name": r'Style Fidelity (only for "Balanced" mode)', | |
"value": 0.5, | |
"min": 0.0, | |
"max": 1.0, | |
"step": 0.01 | |
} | |
], | |
"reference_adain": [ | |
None, | |
{ | |
"name": r'Style Fidelity (only for "Balanced" mode)', | |
"value": 0.5, | |
"min": 0.0, | |
"max": 1.0, | |
"step": 0.01 | |
} | |
], | |
"reference_adain+attn": [ | |
None, | |
{ | |
"name": r'Style Fidelity (only for "Balanced" mode)', | |
"value": 0.5, | |
"min": 0.0, | |
"max": 1.0, | |
"step": 0.01 | |
} | |
], | |
"inpaint_only+lama": [], | |
"color": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"value": 512, | |
"min": 64, | |
"max": 2048, | |
} | |
], | |
"mediapipe_face": [ | |
{ | |
"name": flag_preprocessor_resolution, | |
"value": 512, | |
"min": 64, | |
"max": 2048, | |
}, | |
{ | |
"name": "Max Faces", | |
"value": 1, | |
"min": 1, | |
"max": 10, | |
"step": 1 | |
}, | |
{ | |
"name": "Min Face Confidence", | |
"value": 0.5, | |
"min": 0.01, | |
"max": 1.0, | |
"step": 0.01 | |
} | |
], | |
"recolor_luminance": [ | |
None, | |
{ | |
"name": "Gamma Correction", | |
"value": 1.0, | |
"min": 0.1, | |
"max": 2.0, | |
"step": 0.001 | |
} | |
], | |
"recolor_intensity": [ | |
None, | |
{ | |
"name": "Gamma Correction", | |
"value": 1.0, | |
"min": 0.1, | |
"max": 2.0, | |
"step": 0.001 | |
} | |
], | |
} | |
preprocessor_filters = { | |
"All": "none", | |
"Canny": "canny", | |
"Depth": "depth_midas", | |
"NormalMap": "normal_bae", | |
"OpenPose": "openpose_full", | |
"MLSD": "mlsd", | |
"Lineart": "lineart_standard (from white bg & black line)", | |
"SoftEdge": "softedge_pidinet", | |
"Scribble/Sketch": "scribble_pidinet", | |
"Segmentation": "seg_ofade20k", | |
"Shuffle": "shuffle", | |
"Tile": "tile_resample", | |
"Inpaint": "inpaint_only", | |
"InstructP2P": "none", | |
"Reference": "reference_only", | |
"Recolor": "recolor_luminance", | |
"Revision": "revision_clipvision", | |
"T2I-Adapter": "none", | |
"IP-Adapter": "ip-adapter_clip_sd15", | |
} | |
preprocessor_filters_aliases = { | |
'instructp2p': ['ip2p'], | |
'segmentation': ['seg'], | |
'normalmap': ['normal'], | |
't2i-adapter': ['t2i_adapter', 't2iadapter', 't2ia'], | |
'ip-adapter': ['ip_adapter', 'ipadapter'], | |
'scribble/sketch': ['scribble', 'sketch'] | |
} # must use all lower texts | |