Spaces:
Paused
Paused
File size: 25,767 Bytes
5c32cd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 |
import cv2
import numpy as np
from annotator.util import HWC3
from typing import Callable, Tuple
def pad64(x):
return int(np.ceil(float(x) / 64.0) * 64 - x)
def safer_memory(x):
# Fix many MAC/AMD problems
return np.ascontiguousarray(x.copy()).copy()
def resize_image_with_pad(input_image, resolution, skip_hwc3=False):
if skip_hwc3:
img = input_image
else:
img = HWC3(input_image)
H_raw, W_raw, _ = img.shape
k = float(resolution) / float(min(H_raw, W_raw))
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
H_target = int(np.round(float(H_raw) * k))
W_target = int(np.round(float(W_raw) * k))
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
H_pad, W_pad = pad64(H_target), pad64(W_target)
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
def remove_pad(x):
return safer_memory(x[:H_target, :W_target])
return safer_memory(img_padded), remove_pad
model_canny = None
def canny(img, res=512, thr_a=100, thr_b=200, **kwargs):
l, h = thr_a, thr_b
img, remove_pad = resize_image_with_pad(img, res)
global model_canny
if model_canny is None:
from annotator.canny import apply_canny
model_canny = apply_canny
result = model_canny(img, l, h)
return remove_pad(result), True
def scribble_thr(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
result = np.zeros_like(img, dtype=np.uint8)
result[np.min(img, axis=2) < 127] = 255
return remove_pad(result), True
def scribble_xdog(img, res=512, thr_a=32, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5)
g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0)
dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8)
result = np.zeros_like(img, dtype=np.uint8)
result[2 * (255 - dog) > thr_a] = 255
return remove_pad(result), True
def tile_resample(img, res=512, thr_a=1.0, **kwargs):
img = HWC3(img)
if thr_a < 1.1:
return img, True
H, W, C = img.shape
H = int(float(H) / float(thr_a))
W = int(float(W) / float(thr_a))
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_AREA)
return img, True
def threshold(img, res=512, thr_a=127, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
result = np.zeros_like(img, dtype=np.uint8)
result[np.min(img, axis=2) > thr_a] = 255
return remove_pad(result), True
def identity(img, **kwargs):
return img, True
def invert(img, res=512, **kwargs):
return 255 - HWC3(img), True
model_hed = None
def hed(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_hed
if model_hed is None:
from annotator.hed import apply_hed
model_hed = apply_hed
result = model_hed(img)
return remove_pad(result), True
def hed_safe(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_hed
if model_hed is None:
from annotator.hed import apply_hed
model_hed = apply_hed
result = model_hed(img, is_safe=True)
return remove_pad(result), True
def unload_hed():
global model_hed
if model_hed is not None:
from annotator.hed import unload_hed_model
unload_hed_model()
def scribble_hed(img, res=512, **kwargs):
result, _ = hed(img, res)
import cv2
from annotator.util import nms
result = nms(result, 127, 3.0)
result = cv2.GaussianBlur(result, (0, 0), 3.0)
result[result > 4] = 255
result[result < 255] = 0
return result, True
model_mediapipe_face = None
def mediapipe_face(img, res=512, thr_a: int = 10, thr_b: float = 0.5, **kwargs):
max_faces = int(thr_a)
min_confidence = thr_b
img, remove_pad = resize_image_with_pad(img, res)
global model_mediapipe_face
if model_mediapipe_face is None:
from annotator.mediapipe_face import apply_mediapipe_face
model_mediapipe_face = apply_mediapipe_face
result = model_mediapipe_face(img, max_faces=max_faces, min_confidence=min_confidence)
return remove_pad(result), True
model_mlsd = None
def mlsd(img, res=512, thr_a=0.1, thr_b=0.1, **kwargs):
thr_v, thr_d = thr_a, thr_b
img, remove_pad = resize_image_with_pad(img, res)
global model_mlsd
if model_mlsd is None:
from annotator.mlsd import apply_mlsd
model_mlsd = apply_mlsd
result = model_mlsd(img, thr_v, thr_d)
return remove_pad(result), True
def unload_mlsd():
global model_mlsd
if model_mlsd is not None:
from annotator.mlsd import unload_mlsd_model
unload_mlsd_model()
model_midas = None
def midas(img, res=512, a=np.pi * 2.0, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_midas
if model_midas is None:
from annotator.midas import apply_midas
model_midas = apply_midas
result, _ = model_midas(img, a)
return remove_pad(result), True
def midas_normal(img, res=512, a=np.pi * 2.0, thr_a=0.4, **kwargs): # bg_th -> thr_a
bg_th = thr_a
img, remove_pad = resize_image_with_pad(img, res)
global model_midas
if model_midas is None:
from annotator.midas import apply_midas
model_midas = apply_midas
_, result = model_midas(img, a, bg_th)
return remove_pad(result), True
def unload_midas():
global model_midas
if model_midas is not None:
from annotator.midas import unload_midas_model
unload_midas_model()
model_leres = None
def leres(img, res=512, a=np.pi * 2.0, thr_a=0, thr_b=0, boost=False, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_leres
if model_leres is None:
from annotator.leres import apply_leres
model_leres = apply_leres
result = model_leres(img, thr_a, thr_b, boost=boost)
return remove_pad(result), True
def unload_leres():
global model_leres
if model_leres is not None:
from annotator.leres import unload_leres_model
unload_leres_model()
class OpenposeModel(object):
def __init__(self) -> None:
self.model_openpose = None
def run_model(
self,
img: np.ndarray,
include_body: bool,
include_hand: bool,
include_face: bool,
use_dw_pose: bool = False,
json_pose_callback: Callable[[str], None] = None,
res: int = 512,
**kwargs # Ignore rest of kwargs
) -> Tuple[np.ndarray, bool]:
"""Run the openpose model. Returns a tuple of
- result image
- is_image flag
The JSON format pose string is passed to `json_pose_callback`.
"""
if json_pose_callback is None:
json_pose_callback = lambda x: None
img, remove_pad = resize_image_with_pad(img, res)
if self.model_openpose is None:
from annotator.openpose import OpenposeDetector
self.model_openpose = OpenposeDetector()
return remove_pad(self.model_openpose(
img,
include_body=include_body,
include_hand=include_hand,
include_face=include_face,
use_dw_pose=use_dw_pose,
json_pose_callback=json_pose_callback
)), True
def unload(self):
if self.model_openpose is not None:
self.model_openpose.unload_model()
g_openpose_model = OpenposeModel()
model_uniformer = None
def uniformer(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_uniformer
if model_uniformer is None:
from annotator.uniformer import apply_uniformer
model_uniformer = apply_uniformer
result = model_uniformer(img)
return remove_pad(result), True
def unload_uniformer():
global model_uniformer
if model_uniformer is not None:
from annotator.uniformer import unload_uniformer_model
unload_uniformer_model()
model_pidinet = None
def pidinet(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_pidinet
if model_pidinet is None:
from annotator.pidinet import apply_pidinet
model_pidinet = apply_pidinet
result = model_pidinet(img)
return remove_pad(result), True
def pidinet_ts(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_pidinet
if model_pidinet is None:
from annotator.pidinet import apply_pidinet
model_pidinet = apply_pidinet
result = model_pidinet(img, apply_fliter=True)
return remove_pad(result), True
def pidinet_safe(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_pidinet
if model_pidinet is None:
from annotator.pidinet import apply_pidinet
model_pidinet = apply_pidinet
result = model_pidinet(img, is_safe=True)
return remove_pad(result), True
def scribble_pidinet(img, res=512, **kwargs):
result, _ = pidinet(img, res)
import cv2
from annotator.util import nms
result = nms(result, 127, 3.0)
result = cv2.GaussianBlur(result, (0, 0), 3.0)
result[result > 4] = 255
result[result < 255] = 0
return result, True
def unload_pidinet():
global model_pidinet
if model_pidinet is not None:
from annotator.pidinet import unload_pid_model
unload_pid_model()
clip_encoder = {
'clip_g': None,
'clip_h': None,
'clip_vitl': None,
}
def clip(img, res=512, config='clip_vitl', **kwargs):
img = HWC3(img)
global clip_encoder
if clip_encoder[config] is None:
from annotator.clipvision import ClipVisionDetector
clip_encoder[config] = ClipVisionDetector(config)
result = clip_encoder[config](img)
return result, False
def unload_clip(config='clip_vitl'):
global clip_encoder
if clip_encoder[config] is not None:
clip_encoder[config].unload_model()
clip_encoder[config] = None
model_color = None
def color(img, res=512, **kwargs):
img = HWC3(img)
global model_color
if model_color is None:
from annotator.color import apply_color
model_color = apply_color
result = model_color(img, res=res)
return result, True
def lineart_standard(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
x = img.astype(np.float32)
g = cv2.GaussianBlur(x, (0, 0), 6.0)
intensity = np.min(g - x, axis=2).clip(0, 255)
intensity /= max(16, np.median(intensity[intensity > 8]))
intensity *= 127
result = intensity.clip(0, 255).astype(np.uint8)
return remove_pad(result), True
model_lineart = None
def lineart(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_lineart
if model_lineart is None:
from annotator.lineart import LineartDetector
model_lineart = LineartDetector(LineartDetector.model_default)
# applied auto inversion
result = 255 - model_lineart(img)
return remove_pad(result), True
def unload_lineart():
global model_lineart
if model_lineart is not None:
model_lineart.unload_model()
model_lineart_coarse = None
def lineart_coarse(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_lineart_coarse
if model_lineart_coarse is None:
from annotator.lineart import LineartDetector
model_lineart_coarse = LineartDetector(LineartDetector.model_coarse)
# applied auto inversion
result = 255 - model_lineart_coarse(img)
return remove_pad(result), True
def unload_lineart_coarse():
global model_lineart_coarse
if model_lineart_coarse is not None:
model_lineart_coarse.unload_model()
model_lineart_anime = None
def lineart_anime(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_lineart_anime
if model_lineart_anime is None:
from annotator.lineart_anime import LineartAnimeDetector
model_lineart_anime = LineartAnimeDetector()
# applied auto inversion
result = 255 - model_lineart_anime(img)
return remove_pad(result), True
def unload_lineart_anime():
global model_lineart_anime
if model_lineart_anime is not None:
model_lineart_anime.unload_model()
model_manga_line = None
def lineart_anime_denoise(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_manga_line
if model_manga_line is None:
from annotator.manga_line import MangaLineExtration
model_manga_line = MangaLineExtration()
# applied auto inversion
result = model_manga_line(img)
return remove_pad(result), True
def unload_lineart_anime_denoise():
global model_manga_line
if model_manga_line is not None:
model_manga_line.unload_model()
model_lama = None
def lama_inpaint(img, res=512, **kwargs):
H, W, C = img.shape
raw_color = img[:, :, 0:3].copy()
raw_mask = img[:, :, 3:4].copy()
res = 256 # Always use 256 since lama is trained on 256
img_res, remove_pad = resize_image_with_pad(img, res, skip_hwc3=True)
global model_lama
if model_lama is None:
from annotator.lama import LamaInpainting
model_lama = LamaInpainting()
# applied auto inversion
prd_color = model_lama(img_res)
prd_color = remove_pad(prd_color)
prd_color = cv2.resize(prd_color, (W, H))
alpha = raw_mask.astype(np.float32) / 255.0
fin_color = prd_color.astype(np.float32) * alpha + raw_color.astype(np.float32) * (1 - alpha)
fin_color = fin_color.clip(0, 255).astype(np.uint8)
result = np.concatenate([fin_color, raw_mask], axis=2)
return result, True
def unload_lama_inpaint():
global model_lama
if model_lama is not None:
model_lama.unload_model()
model_zoe_depth = None
def zoe_depth(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_zoe_depth
if model_zoe_depth is None:
from annotator.zoe import ZoeDetector
model_zoe_depth = ZoeDetector()
result = model_zoe_depth(img)
return remove_pad(result), True
def unload_zoe_depth():
global model_zoe_depth
if model_zoe_depth is not None:
model_zoe_depth.unload_model()
model_normal_bae = None
def normal_bae(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_normal_bae
if model_normal_bae is None:
from annotator.normalbae import NormalBaeDetector
model_normal_bae = NormalBaeDetector()
result = model_normal_bae(img)
return remove_pad(result), True
def unload_normal_bae():
global model_normal_bae
if model_normal_bae is not None:
model_normal_bae.unload_model()
model_oneformer_coco = None
def oneformer_coco(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_oneformer_coco
if model_oneformer_coco is None:
from annotator.oneformer import OneformerDetector
model_oneformer_coco = OneformerDetector(OneformerDetector.configs["coco"])
result = model_oneformer_coco(img)
return remove_pad(result), True
def unload_oneformer_coco():
global model_oneformer_coco
if model_oneformer_coco is not None:
model_oneformer_coco.unload_model()
model_oneformer_ade20k = None
def oneformer_ade20k(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
global model_oneformer_ade20k
if model_oneformer_ade20k is None:
from annotator.oneformer import OneformerDetector
model_oneformer_ade20k = OneformerDetector(OneformerDetector.configs["ade20k"])
result = model_oneformer_ade20k(img)
return remove_pad(result), True
def unload_oneformer_ade20k():
global model_oneformer_ade20k
if model_oneformer_ade20k is not None:
model_oneformer_ade20k.unload_model()
model_shuffle = None
def shuffle(img, res=512, **kwargs):
img, remove_pad = resize_image_with_pad(img, res)
img = remove_pad(img)
global model_shuffle
if model_shuffle is None:
from annotator.shuffle import ContentShuffleDetector
model_shuffle = ContentShuffleDetector()
result = model_shuffle(img)
return result, True
def recolor_luminance(img, res=512, thr_a=1.0, **kwargs):
result = cv2.cvtColor(HWC3(img), cv2.COLOR_BGR2LAB)
result = result[:, :, 0].astype(np.float32) / 255.0
result = result ** thr_a
result = (result * 255.0).clip(0, 255).astype(np.uint8)
result = cv2.cvtColor(result, cv2.COLOR_GRAY2RGB)
return result, True
def recolor_intensity(img, res=512, thr_a=1.0, **kwargs):
result = cv2.cvtColor(HWC3(img), cv2.COLOR_BGR2HSV)
result = result[:, :, 2].astype(np.float32) / 255.0
result = result ** thr_a
result = (result * 255.0).clip(0, 255).astype(np.uint8)
result = cv2.cvtColor(result, cv2.COLOR_GRAY2RGB)
return result, True
model_free_preprocessors = [
"reference_only",
"reference_adain",
"reference_adain+attn",
"revision_clipvision",
"revision_ignore_prompt"
]
no_control_mode_preprocessors = [
"revision_clipvision",
"revision_ignore_prompt",
"clip_vision",
"ip-adapter_clip_sd15",
"ip-adapter_clip_sdxl",
"t2ia_style_clipvision"
]
flag_preprocessor_resolution = "Preprocessor Resolution"
preprocessor_sliders_config = {
"none": [],
"inpaint": [],
"inpaint_only": [],
"revision_clipvision": [
None,
{
"name": "Noise Augmentation",
"value": 0.0,
"min": 0.0,
"max": 1.0
},
],
"revision_ignore_prompt": [
None,
{
"name": "Noise Augmentation",
"value": 0.0,
"min": 0.0,
"max": 1.0
},
],
"canny": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048
},
{
"name": "Canny Low Threshold",
"value": 100,
"min": 1,
"max": 255
},
{
"name": "Canny High Threshold",
"value": 200,
"min": 1,
"max": 255
},
],
"mlsd": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
},
{
"name": "MLSD Value Threshold",
"min": 0.01,
"max": 2.0,
"value": 0.1,
"step": 0.01
},
{
"name": "MLSD Distance Threshold",
"min": 0.01,
"max": 20.0,
"value": 0.1,
"step": 0.01
}
],
"hed": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"scribble_hed": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"hed_safe": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"openpose": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"openpose_full": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"dw_openpose_full": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"segmentation": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"depth": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
}
],
"depth_leres": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
},
{
"name": "Remove Near %",
"min": 0,
"max": 100,
"value": 0,
"step": 0.1,
},
{
"name": "Remove Background %",
"min": 0,
"max": 100,
"value": 0,
"step": 0.1,
}
],
"depth_leres++": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
},
{
"name": "Remove Near %",
"min": 0,
"max": 100,
"value": 0,
"step": 0.1,
},
{
"name": "Remove Background %",
"min": 0,
"max": 100,
"value": 0,
"step": 0.1,
}
],
"normal_map": [
{
"name": flag_preprocessor_resolution,
"min": 64,
"max": 2048,
"value": 512
},
{
"name": "Normal Background Threshold",
"min": 0.0,
"max": 1.0,
"value": 0.4,
"step": 0.01
}
],
"threshold": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048
},
{
"name": "Binarization Threshold",
"min": 0,
"max": 255,
"value": 127
}
],
"scribble_xdog": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048
},
{
"name": "XDoG Threshold",
"min": 1,
"max": 64,
"value": 32,
}
],
"tile_resample": [
None,
{
"name": "Down Sampling Rate",
"value": 1.0,
"min": 1.0,
"max": 8.0,
"step": 0.01
}
],
"tile_colorfix": [
None,
{
"name": "Variation",
"value": 8.0,
"min": 3.0,
"max": 32.0,
"step": 1.0
}
],
"tile_colorfix+sharp": [
None,
{
"name": "Variation",
"value": 8.0,
"min": 3.0,
"max": 32.0,
"step": 1.0
},
{
"name": "Sharpness",
"value": 1.0,
"min": 0.0,
"max": 2.0,
"step": 0.01
}
],
"reference_only": [
None,
{
"name": r'Style Fidelity (only for "Balanced" mode)',
"value": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01
}
],
"reference_adain": [
None,
{
"name": r'Style Fidelity (only for "Balanced" mode)',
"value": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01
}
],
"reference_adain+attn": [
None,
{
"name": r'Style Fidelity (only for "Balanced" mode)',
"value": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01
}
],
"inpaint_only+lama": [],
"color": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048,
}
],
"mediapipe_face": [
{
"name": flag_preprocessor_resolution,
"value": 512,
"min": 64,
"max": 2048,
},
{
"name": "Max Faces",
"value": 1,
"min": 1,
"max": 10,
"step": 1
},
{
"name": "Min Face Confidence",
"value": 0.5,
"min": 0.01,
"max": 1.0,
"step": 0.01
}
],
"recolor_luminance": [
None,
{
"name": "Gamma Correction",
"value": 1.0,
"min": 0.1,
"max": 2.0,
"step": 0.001
}
],
"recolor_intensity": [
None,
{
"name": "Gamma Correction",
"value": 1.0,
"min": 0.1,
"max": 2.0,
"step": 0.001
}
],
}
preprocessor_filters = {
"All": "none",
"Canny": "canny",
"Depth": "depth_midas",
"NormalMap": "normal_bae",
"OpenPose": "openpose_full",
"MLSD": "mlsd",
"Lineart": "lineart_standard (from white bg & black line)",
"SoftEdge": "softedge_pidinet",
"Scribble/Sketch": "scribble_pidinet",
"Segmentation": "seg_ofade20k",
"Shuffle": "shuffle",
"Tile": "tile_resample",
"Inpaint": "inpaint_only",
"InstructP2P": "none",
"Reference": "reference_only",
"Recolor": "recolor_luminance",
"Revision": "revision_clipvision",
"T2I-Adapter": "none",
"IP-Adapter": "ip-adapter_clip_sd15",
}
preprocessor_filters_aliases = {
'instructp2p': ['ip2p'],
'segmentation': ['seg'],
'normalmap': ['normal'],
't2i-adapter': ['t2i_adapter', 't2iadapter', 't2ia'],
'ip-adapter': ['ip_adapter', 'ipadapter'],
'scribble/sketch': ['scribble', 'sketch']
} # must use all lower texts
|