Spaces:
Runtime error
Runtime error
File size: 19,537 Bytes
6747401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
#install dependencies
from flask import Flask, render_template, request, redirect, url_for
import os
import shutil
import webview
import tkinter as tk
from tkinter import filedialog
import openpyxl
import pandas as pd
import requests
from fuzzywuzzy import fuzz
from openpyxl.styles import PatternFill
from openpyxl.styles.alignment import Alignment
import google.generativeai as genai
app = Flask(__name__, static_folder='./static', template_folder='./templates')
app.config['UPLOAD_FOLDER'] = 'uploads'
app.config['OUTPUT_FOLDER'] = 'output'
output_file = None
window = webview.create_window('DeDuplicae-Vendor', app)
#connect to google gemini API key
GOOGLE_API_KEY='AIzaSyCtACPu9EOnEa1_iAWsv_u__PQRpaCT564'
genai.configure(api_key=GOOGLE_API_KEY)
#Load the gemini model
model = genai.GenerativeModel('gemini-pro')
# Function to apply to df1 to create the cont_person_name column
def process_fuzzy_ratios(rows_dict):
fuzz_data = {}
for key, row in enumerate(rows_dict):
if key == 0:
# For the first row, delete specified columns
del row["address_fuzzy_ratio"]
del row["bank_fuzzy_ratio"]
del row["name_fuzzy_ratio"]
del row["accgrp_fuzzy_ratio"]
del row["tax_fuzzy_ratio"]
del row["postal_fuzzy_ratio"]
else:
# For subsequent rows, store data in fuzz_data dictionary
fuzz_data["row_" + str(key + 1)] = {
"address_fuzzy_ratio": row.pop("address_fuzzy_ratio"),
"bank_fuzzy_ratio": row.pop("bank_fuzzy_ratio"),
"name_fuzzy_ratio": row.pop("name_fuzzy_ratio"),
"accgrp_fuzzy_ratio": row.pop("accgrp_fuzzy_ratio"),
"tax_fuzzy_ratio": row.pop("tax_fuzzy_ratio"),
"postal_fuzzy_ratio": row.pop("postal_fuzzy_ratio")
}
return fuzz_data, rows_dict
# Code to perform gemini analysis
def gemini_analysis(dataframe):
prev_row_duplicate = False
prev_row_number = None
for index, row in dataframe.iterrows():
# Find duplicate pairs
if row['Remarks'] == 'Duplicate':
if prev_row_duplicate:
duplicate_pairs=[]
row1 = dataframe.loc[index-1].to_dict()
row2 = row.to_dict()
duplicate_pairs.append(row1)
duplicate_pairs.append(row2)
fuzzy_ratios, duplicate_pairs = process_fuzzy_ratios(duplicate_pairs)
for dictionary in duplicate_pairs:
for _ in range(12):
if dictionary:
dictionary.popitem()
main_data_str = "[{}]".format(', '.join([str(d) for d in duplicate_pairs]))
fuzzy_data_str = "{}".format(fuzzy_ratios)
qs="I have the data",main_data_str,"The corresponding fuzzy ratios are here: ",fuzzy_data_str,"Give a concise explanation why these two rows are duplicate based on analyzing the main data and explaining which column values are same and which column values are different?"
# Ask gemini to analyse the data
try:
response = model.generate_content(qs)
dataframe.at[index-1, 'Explanation'] = response.text
except requests.HTTPError:
dataframe.at[index-1, 'Explanation'] = 'An error occured'
except ValueError:
dataframe.at[index-1, 'Explanation'] = 'An error occured'
except Exception:
dataframe.at[index-1, 'Explanation'] = 'An error occured'
prev_row_duplicate = True
else:
prev_row_duplicate = False
# The logic to find duplicacy
def process_csv(file, check=['Tax','Bank','Address','Name','PostCode','AccGrp']):
def calculate_tax_duplicacy(df):
df.sort_values(['Tax'], inplace=True)
df = df.reset_index(drop=True)
df.at[0, 'tax_fuzzy_ratio'] = 100
last_row_index = len(df) - 1
df.at[last_row_index, 'tax_fuzzy_ratio'] = 100
for i in range(1, last_row_index):
current_tax = df['Tax'].iloc[i]
previous_tax = df['Tax'].iloc[i - 1]
fuzzy_ratio = fuzz.ratio(previous_tax, current_tax)
df.at[i, 'tax_fuzzy_ratio'] = fuzzy_ratio
df['tax_fuzzy_ratio'] = pd.to_numeric(df['tax_fuzzy_ratio'], errors='coerce')
# Calculate the duplicate groups based on tax column
group_counter = 1
df.at[0, 'tax_based_group'] = group_counter
for i in range(1, len(df)):
if df.at[i, 'tax_fuzzy_ratio'] > 90:
df.at[i, 'tax_based_group'] = df.at[i - 1, 'tax_based_group']
else:
group_counter += 1
df.at[i, 'tax_based_group'] = group_counter
return df
def calculate_bank_duplicacy(df):
df.sort_values(['Group_tax', 'Bank'], inplace=True)
df = df.reset_index(drop=True)
df.at[0, 'bank_fuzzy_ratio'] = 100
df.at[last_row_index, 'bank_fuzzy_ratio'] = 100
for i in range(1, last_row_index):
current_address = df['Bank'].iloc[i]
previous_address = df['Bank'].iloc[i - 1]
fuzzy_ratio = fuzz.ratio(previous_address, current_address)
df.at[i, 'bank_fuzzy_ratio'] = fuzzy_ratio
df['bank_fuzzy_ratio'] = pd.to_numeric(df['bank_fuzzy_ratio'], errors='coerce')
# Calculate the duplicate groups for bank column
bank_group_counter = 1
df.at[0, 'bank_based_group'] = str(bank_group_counter)
group = df.at[0, 'tax_based_group']
for i in range(1, len(df)):
if df.at[i, 'bank_fuzzy_ratio'] >= 100:
df.at[i, 'bank_based_group'] = df.at[i - 1, 'bank_based_group']
else:
if df.at[i, 'tax_based_group'] != group:
bank_group_counter = 1
group = df.at[i, 'tax_based_group']
else:
bank_group_counter += 1
df.at[i, 'bank_based_group'] = str(bank_group_counter)
return df
def calculate_address_duplicacy(df):
df.sort_values(['Group_tax_bank', 'Address'], inplace=True)
df = df.reset_index(drop=True)
df.at[0, 'address_fuzzy_ratio'] = 100
df.at[last_row_index, 'address_fuzzy_ratio'] = 100
for i in range(1, last_row_index):
current_address = df['Address'].iloc[i]
previous_address = df['Address'].iloc[i - 1]
fuzzy_ratio = fuzz.ratio(previous_address, current_address)
df.at[i, 'address_fuzzy_ratio'] = fuzzy_ratio
df['address_fuzzy_ratio'] = pd.to_numeric(df['address_fuzzy_ratio'], errors='coerce')
# Calculate the duplicate groups for address column
address_group_counter = 1
df.at[0, 'address_based_group'] = str(address_group_counter)
group = df.at[0, 'Group_tax_bank']
for i in range(1, len(df)):
if df.at[i, 'address_fuzzy_ratio'] > 70:
df.at[i, 'address_based_group'] = df.at[i - 1, 'address_based_group']
else:
if df.at[i, 'Group_tax_bank'] != group:
address_group_counter = 1
group = df.at[i, 'Group_tax_bank']
else:
address_group_counter += 1
df.at[i, 'address_based_group'] = str(address_group_counter)
return df
def calculate_name_duplicacy(df):
df.sort_values(['Group_tax_bank_add', 'Name'], inplace=True)
df = df.reset_index(drop=True)
df.at[0, 'name_fuzzy_ratio'] = 100
df.at[last_row_index, 'name_fuzzy_ratio'] = 100
for i in range(1, last_row_index):
current_address = df['Name'].iloc[i]
previous_address = df['Name'].iloc[i - 1]
fuzzy_ratio = fuzz.ratio(previous_address, current_address)
df.at[i, 'name_fuzzy_ratio'] = fuzzy_ratio
df['name_fuzzy_ratio'] = pd.to_numeric(df['name_fuzzy_ratio'], errors='coerce')
# Calculate the duplicate groups for name column
name_group_counter = 1
df.at[0, 'name_based_group'] = str(name_group_counter)
group = df.at[0, 'Group_tax_bank_add']
for i in range(1, len(df)):
if df.at[i, 'name_fuzzy_ratio'] > 80:
df.at[i, 'name_based_group'] = df.at[i - 1, 'name_based_group']
else:
if df.at[i, 'Group_tax_bank_add'] != group:
name_group_counter = 1
group = df.at[i, 'Group_tax_bank_add']
else:
name_group_counter += 1
df.at[i, 'name_based_group'] = str(name_group_counter)
return df
def calculate_postcode_duplicacy(df):
df.sort_values(['Group_tax_bank_add_name', 'POSTCODE1'], inplace=True)
df = df.reset_index(drop=True)
df.at[0, 'postal_fuzzy_ratio'] = 100
df.at[last_row_index, 'postal_fuzzy_ratio'] = 100
for i in range(1, last_row_index):
current_address = df['POSTCODE1'].iloc[i]
previous_address = df['POSTCODE1'].iloc[i - 1]
fuzzy_ratio = fuzz.ratio(previous_address, current_address)
df.at[i, 'postal_fuzzy_ratio'] = fuzzy_ratio
df['postal_fuzzy_ratio'] = pd.to_numeric(df['postal_fuzzy_ratio'], errors='coerce')
# Calculate the duplicate groups for postcode column
postcode_group_counter = 1
df.at[0, 'postal_based_group'] = str(postcode_group_counter)
group = df.at[0, 'Group_tax_bank_add_name']
for i in range(1, len(df)):
if df.at[i, 'postal_fuzzy_ratio'] > 90:
df.at[i, 'postal_based_group'] = df.at[i - 1, 'postal_based_group']
else:
if df.at[i, 'Group_tax_bank_add_name'] != group:
postcode_group_counter = 1
group = df.at[i, 'Group_tax_bank_add_name']
else:
postcode_group_counter += 1
df.at[i, 'postal_based_group'] = str(postcode_group_counter)
return df
def calculate_accgrp_duplicacy(df):
df.sort_values(['Group_tax_bank_add_name_post', 'KTOKK'], inplace=True)
df = df.reset_index(drop=True)
df.at[0, 'accgrp_fuzzy_ratio'] = 100
df.at[last_row_index, 'accgrp_fuzzy_ratio'] = 100
for i in range(1, last_row_index):
current_address = df['KTOKK'].iloc[i]
previous_address = df['KTOKK'].iloc[i - 1]
fuzzy_ratio = fuzz.ratio(previous_address, current_address)
df.at[i, 'accgrp_fuzzy_ratio'] = fuzzy_ratio
df['accgrp_fuzzy_ratio'] = pd.to_numeric(df['accgrp_fuzzy_ratio'], errors='coerce')
# Calculate the duplicate groups for accgrp column
accgrp_group_counter = 1
df.at[0, 'accgrp_based_group'] = str(accgrp_group_counter)
group = df.at[0, 'Group_tax_bank_add_name_post']
for i in range(1, len(df)):
if df.at[i, 'accgrp_fuzzy_ratio'] >= 100:
df.at[i, 'accgrp_based_group'] = df.at[i - 1, 'accgrp_based_group']
else:
if df.at[i, 'Group_tax_bank_add_name_post'] != group:
accgrp_group_counter = 1
group = df.at[i, 'Group_tax_bank_add_name_post']
else:
accgrp_group_counter += 1
df.at[i, 'accgrp_based_group'] = str(accgrp_group_counter)
return df
# Search for the header row
def find_header_row(file_path, specified_headers, sheet_name):
workbook = openpyxl.load_workbook(file_path)
sheet = workbook[sheet_name]
header_row = None
temp_values = []
for row in sheet.iter_rows():
for cell in row:
if cell.value in specified_headers:
header_row = cell.row
break
if header_row is not None:
break
if header_row is None:
return
# Store values in temporary variable
for row in range(1, header_row):
for cell in sheet[row]:
temp_values.append(cell.value)
# Read DataFrame below the header row using pandas
df = pd.DataFrame(sheet.iter_rows(min_row=header_row + 1, values_only=True),
columns=[cell.value for cell in next(sheet.iter_rows(min_row=header_row))])
return header_row, temp_values, df
sheet_name1 = 'General Data '
specified_headers = ["LIFNR", "KTOKK", "NAMEFIRST", "NAMELAST", "NAME3", "NAME4", "STREET", "POSTCODE1", "CITY1", "COUNTRY", "REGION", "SMTPADDR", "BANKL", "BANKN", "TAXTYPE", "TAXNUM", "Unnamed: 16", "Unnamed: 17", "Unnamed: 18"]
header_row, temp_values, df = find_header_row(file, specified_headers, sheet_name1)
# Replace null values with a blank space
df = df.fillna(" ")
# Creating new columns by concatenating original columns
df['Address'] = df['STREET'].astype(str) + '-' + df['CITY1'].astype(str) + '-' + df['COUNTRY'].astype(str) + '-' + \
df['REGION'].astype(str)
df['Name'] = df['NAMEFIRST'].astype(str) + '-' + df['NAMELAST'].astype(str) + '-' + df['NAME3'].astype(str) + '-' + \
df['NAME4'].astype(str)
df['Bank'] = df['BANKL'].astype(str) + '-' + df['BANKN'].astype(str)
df['Tax'] = df['TAXTYPE'].astype(str) + '-' + df['TAXNUM'].astype(str)
# Converting all concatenated columns to lowercase
df['Name'] = df['Name'].str.lower()
df['Address'] = df['Address'].str.lower()
df['Bank'] = df['Bank'].str.lower()
df['Tax'] = df['Tax'].str.lower()
# Create new columns with the following names for fuzzy ratio
df['name_fuzzy_ratio'] = ''
df['accgrp_fuzzy_ratio'] = ''
df['address_fuzzy_ratio'] = ''
df['bank_fuzzy_ratio'] = ''
df['tax_fuzzy_ratio'] = ''
df['postal_fuzzy_ratio'] = ''
# Create new columns with the following names for crearing groups
df['name_based_group'] = ''
df['accgrp_based_group'] = ''
df['address_based_group'] = ''
df['bank_based_group'] = ''
df['tax_based_group'] = ''
df['postal_based_group'] = ''
# Calculate last row index value
last_row_index = len(df) - 1
# Calculate the fuzzy ratios for tax column
if 'Tax' in check:
df = calculate_tax_duplicacy(df)
df['Group_tax'] = df.apply(lambda row: '{}'.format(row['tax_based_group']), axis=1)
# Calculate the fuzzy ratios for bank column
if 'Bank' in check:
df = calculate_bank_duplicacy(df)
df['Group_tax_bank'] = df.apply(lambda row: '{}_{}'.format(row['tax_based_group'], row['bank_based_group']), axis=1)
# Calculate the fuzzy ratios for address column
if 'Address' in check:
df = calculate_address_duplicacy(df)
df['Group_tax_bank_add'] = df.apply(lambda row: '{}_{}'.format(row['Group_tax_bank'], row['address_based_group']),
axis=1)
# Calculate the fuzzy ratios for name column
if 'Name' in check:
df = calculate_name_duplicacy(df)
df['Group_tax_bank_add_name'] = df.apply(
lambda row: '{}_{}'.format(row['Group_tax_bank_add'], row['name_based_group']), axis=1)
# Calculate the fuzzy ratios for postcode column
if 'PostCode' in check:
df = calculate_postcode_duplicacy(df)
df['Group_tax_bank_add_name_post'] = df.apply(
lambda row: '{}_{}'.format(row['Group_tax_bank_add_name'], row['postal_based_group']), axis=1)
# Calculate the fuzzy ratios for accgrp column
if 'AccGrp' in check:
df = calculate_accgrp_duplicacy(df)
df['Group_tax_bank_add_name_post_accgrp'] = df.apply(
lambda row: '{}_{}'.format(row['Group_tax_bank_add_name_post'], row['accgrp_based_group']), axis=1)
# Find the final duplicate groups in AND condition
duplicate_groups = df['Group_tax_bank_add_name_post_accgrp'].duplicated(keep=False)
df['Remarks'] = ['Duplicate' if is_duplicate else 'Unique' for is_duplicate in duplicate_groups]
# Ask gemini to analyse the duplicate columns
gemini_analysis(df)
# Drop the columns related to fuzzy ratios and groups
columns_to_drop = ['name_fuzzy_ratio', 'accgrp_fuzzy_ratio', 'address_fuzzy_ratio', 'bank_fuzzy_ratio',
'tax_fuzzy_ratio', 'postal_fuzzy_ratio', 'name_based_group', 'accgrp_based_group',
'address_based_group', 'bank_based_group', 'tax_based_group', 'postal_based_group',
'Group_tax_bank', 'Group_tax_bank_add', 'Group_tax_bank_add_name',
'Group_tax_bank_add_name_post', 'Group_tax', 'Group_tax_bank_add_name_post_accgrp']
df = df.drop(columns=columns_to_drop, axis=1)
df.to_excel('output/output.xlsx', index=False)
excel_writer = pd.ExcelWriter('output/output.xlsx', engine='openpyxl')
df.to_excel(excel_writer, index=False, sheet_name='Sheet1')
# Access the workbook
workbook = excel_writer.book
worksheet = workbook['Sheet1']
# Apply row coloring based on the value in the 'Remarks' column and also wrap the texts
duplicate_fill = PatternFill(start_color="FFFF00", end_color="FFFF00", fill_type="solid")
for idx, row in df.iterrows():
if row['Remarks'] == 'Duplicate':
for cell in worksheet[idx + 2]:
cell.alignment = Alignment(wrap_text=True)
cell.fill = duplicate_fill
# Iterate over columns and set their width
for col in worksheet.columns:
col_letter = col[0].column_letter
worksheet.column_dimensions[col_letter].width = 28
# Iterate over rows and set their height
for row in worksheet.iter_rows():
worksheet.row_dimensions[row[0].row].height = 20
# Save the changes
excel_writer.close()
output_path = os.path.join(app.config['OUTPUT_FOLDER'], 'output.xlsx')
return output_path
def save_error_message(error_message):
with open('static/error.txt', 'w') as f:
f.write(error_message)
@app.route('/', methods=['GET', 'POST'])
def upload_file():
global output_file
error_message = None
if request.method == 'POST':
file = request.files['file']
selected_options = request.form.getlist('option')
if file:
try:
file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
file.save(file_path)
output_file = process_csv(file_path)
return redirect(url_for('upload_file'))
except Exception as e:
error_message = str(e)
save_error_message(error_message)
return render_template('index.html', output_file=output_file, error_message=error_message)
def save_file_dialog(default_filename="output.xlsx", filetypes=(("XLSX files", ".xlsx"), ("All files", ".*"))):
root = tk.Tk()
root.withdraw()
file_path = filedialog.asksaveasfilename(initialfile=default_filename, filetypes=filetypes, defaultextension=".xlsx")
return file_path
@app.route('/downloads/output.xlsx')
def download_file():
output_file_path = os.path.join(app.config['OUTPUT_FOLDER'], 'output.xlsx')
selected_path = save_file_dialog()
if selected_path:
shutil.copyfile(output_file_path, selected_path)
return redirect(url_for('upload_file'))
if __name__ == '__main__':
app.run(debug=True) |