Spaces:
Runtime error
Runtime error
Sambit20030731
commited on
Commit
•
6747401
1
Parent(s):
8112a45
Upload 8 files
Browse files- Dockerfile +11 -0
- app.py +451 -0
- output/readme.txt.txt +1 -0
- requirement.txt +9 -0
- static/script.js +64 -0
- static/styles.css +119 -0
- templates/index.html +60 -0
- uploads/readme.txt.txt +1 -0
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#install dependencies
|
2 |
+
from flask import Flask, render_template, request, redirect, url_for
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import webview
|
6 |
+
import tkinter as tk
|
7 |
+
from tkinter import filedialog
|
8 |
+
import openpyxl
|
9 |
+
import pandas as pd
|
10 |
+
import requests
|
11 |
+
from fuzzywuzzy import fuzz
|
12 |
+
from openpyxl.styles import PatternFill
|
13 |
+
from openpyxl.styles.alignment import Alignment
|
14 |
+
import google.generativeai as genai
|
15 |
+
|
16 |
+
|
17 |
+
app = Flask(__name__, static_folder='./static', template_folder='./templates')
|
18 |
+
app.config['UPLOAD_FOLDER'] = 'uploads'
|
19 |
+
app.config['OUTPUT_FOLDER'] = 'output'
|
20 |
+
output_file = None
|
21 |
+
window = webview.create_window('DeDuplicae-Vendor', app)
|
22 |
+
|
23 |
+
|
24 |
+
#connect to google gemini API key
|
25 |
+
GOOGLE_API_KEY='AIzaSyCtACPu9EOnEa1_iAWsv_u__PQRpaCT564'
|
26 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
27 |
+
|
28 |
+
|
29 |
+
#Load the gemini model
|
30 |
+
model = genai.GenerativeModel('gemini-pro')
|
31 |
+
|
32 |
+
|
33 |
+
# Function to apply to df1 to create the cont_person_name column
|
34 |
+
def process_fuzzy_ratios(rows_dict):
|
35 |
+
fuzz_data = {}
|
36 |
+
for key, row in enumerate(rows_dict):
|
37 |
+
if key == 0:
|
38 |
+
# For the first row, delete specified columns
|
39 |
+
del row["address_fuzzy_ratio"]
|
40 |
+
del row["bank_fuzzy_ratio"]
|
41 |
+
del row["name_fuzzy_ratio"]
|
42 |
+
del row["accgrp_fuzzy_ratio"]
|
43 |
+
del row["tax_fuzzy_ratio"]
|
44 |
+
del row["postal_fuzzy_ratio"]
|
45 |
+
else:
|
46 |
+
# For subsequent rows, store data in fuzz_data dictionary
|
47 |
+
fuzz_data["row_" + str(key + 1)] = {
|
48 |
+
"address_fuzzy_ratio": row.pop("address_fuzzy_ratio"),
|
49 |
+
"bank_fuzzy_ratio": row.pop("bank_fuzzy_ratio"),
|
50 |
+
"name_fuzzy_ratio": row.pop("name_fuzzy_ratio"),
|
51 |
+
"accgrp_fuzzy_ratio": row.pop("accgrp_fuzzy_ratio"),
|
52 |
+
"tax_fuzzy_ratio": row.pop("tax_fuzzy_ratio"),
|
53 |
+
"postal_fuzzy_ratio": row.pop("postal_fuzzy_ratio")
|
54 |
+
}
|
55 |
+
return fuzz_data, rows_dict
|
56 |
+
|
57 |
+
|
58 |
+
# Code to perform gemini analysis
|
59 |
+
def gemini_analysis(dataframe):
|
60 |
+
prev_row_duplicate = False
|
61 |
+
prev_row_number = None
|
62 |
+
for index, row in dataframe.iterrows():
|
63 |
+
|
64 |
+
# Find duplicate pairs
|
65 |
+
if row['Remarks'] == 'Duplicate':
|
66 |
+
if prev_row_duplicate:
|
67 |
+
duplicate_pairs=[]
|
68 |
+
row1 = dataframe.loc[index-1].to_dict()
|
69 |
+
row2 = row.to_dict()
|
70 |
+
duplicate_pairs.append(row1)
|
71 |
+
duplicate_pairs.append(row2)
|
72 |
+
fuzzy_ratios, duplicate_pairs = process_fuzzy_ratios(duplicate_pairs)
|
73 |
+
for dictionary in duplicate_pairs:
|
74 |
+
for _ in range(12):
|
75 |
+
if dictionary:
|
76 |
+
dictionary.popitem()
|
77 |
+
main_data_str = "[{}]".format(', '.join([str(d) for d in duplicate_pairs]))
|
78 |
+
fuzzy_data_str = "{}".format(fuzzy_ratios)
|
79 |
+
qs="I have the data",main_data_str,"The corresponding fuzzy ratios are here: ",fuzzy_data_str,"Give a concise explanation why these two rows are duplicate based on analyzing the main data and explaining which column values are same and which column values are different?"
|
80 |
+
|
81 |
+
# Ask gemini to analyse the data
|
82 |
+
try:
|
83 |
+
response = model.generate_content(qs)
|
84 |
+
dataframe.at[index-1, 'Explanation'] = response.text
|
85 |
+
except requests.HTTPError:
|
86 |
+
dataframe.at[index-1, 'Explanation'] = 'An error occured'
|
87 |
+
except ValueError:
|
88 |
+
dataframe.at[index-1, 'Explanation'] = 'An error occured'
|
89 |
+
except Exception:
|
90 |
+
dataframe.at[index-1, 'Explanation'] = 'An error occured'
|
91 |
+
prev_row_duplicate = True
|
92 |
+
else:
|
93 |
+
prev_row_duplicate = False
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
# The logic to find duplicacy
|
98 |
+
def process_csv(file, check=['Tax','Bank','Address','Name','PostCode','AccGrp']):
|
99 |
+
|
100 |
+
def calculate_tax_duplicacy(df):
|
101 |
+
df.sort_values(['Tax'], inplace=True)
|
102 |
+
df = df.reset_index(drop=True)
|
103 |
+
df.at[0, 'tax_fuzzy_ratio'] = 100
|
104 |
+
last_row_index = len(df) - 1
|
105 |
+
df.at[last_row_index, 'tax_fuzzy_ratio'] = 100
|
106 |
+
for i in range(1, last_row_index):
|
107 |
+
current_tax = df['Tax'].iloc[i]
|
108 |
+
previous_tax = df['Tax'].iloc[i - 1]
|
109 |
+
fuzzy_ratio = fuzz.ratio(previous_tax, current_tax)
|
110 |
+
df.at[i, 'tax_fuzzy_ratio'] = fuzzy_ratio
|
111 |
+
df['tax_fuzzy_ratio'] = pd.to_numeric(df['tax_fuzzy_ratio'], errors='coerce')
|
112 |
+
|
113 |
+
# Calculate the duplicate groups based on tax column
|
114 |
+
group_counter = 1
|
115 |
+
df.at[0, 'tax_based_group'] = group_counter
|
116 |
+
for i in range(1, len(df)):
|
117 |
+
if df.at[i, 'tax_fuzzy_ratio'] > 90:
|
118 |
+
df.at[i, 'tax_based_group'] = df.at[i - 1, 'tax_based_group']
|
119 |
+
else:
|
120 |
+
group_counter += 1
|
121 |
+
df.at[i, 'tax_based_group'] = group_counter
|
122 |
+
return df
|
123 |
+
|
124 |
+
def calculate_bank_duplicacy(df):
|
125 |
+
df.sort_values(['Group_tax', 'Bank'], inplace=True)
|
126 |
+
df = df.reset_index(drop=True)
|
127 |
+
df.at[0, 'bank_fuzzy_ratio'] = 100
|
128 |
+
df.at[last_row_index, 'bank_fuzzy_ratio'] = 100
|
129 |
+
for i in range(1, last_row_index):
|
130 |
+
current_address = df['Bank'].iloc[i]
|
131 |
+
previous_address = df['Bank'].iloc[i - 1]
|
132 |
+
fuzzy_ratio = fuzz.ratio(previous_address, current_address)
|
133 |
+
df.at[i, 'bank_fuzzy_ratio'] = fuzzy_ratio
|
134 |
+
df['bank_fuzzy_ratio'] = pd.to_numeric(df['bank_fuzzy_ratio'], errors='coerce')
|
135 |
+
|
136 |
+
# Calculate the duplicate groups for bank column
|
137 |
+
bank_group_counter = 1
|
138 |
+
df.at[0, 'bank_based_group'] = str(bank_group_counter)
|
139 |
+
group = df.at[0, 'tax_based_group']
|
140 |
+
for i in range(1, len(df)):
|
141 |
+
if df.at[i, 'bank_fuzzy_ratio'] >= 100:
|
142 |
+
df.at[i, 'bank_based_group'] = df.at[i - 1, 'bank_based_group']
|
143 |
+
else:
|
144 |
+
if df.at[i, 'tax_based_group'] != group:
|
145 |
+
bank_group_counter = 1
|
146 |
+
group = df.at[i, 'tax_based_group']
|
147 |
+
else:
|
148 |
+
bank_group_counter += 1
|
149 |
+
df.at[i, 'bank_based_group'] = str(bank_group_counter)
|
150 |
+
return df
|
151 |
+
|
152 |
+
def calculate_address_duplicacy(df):
|
153 |
+
df.sort_values(['Group_tax_bank', 'Address'], inplace=True)
|
154 |
+
df = df.reset_index(drop=True)
|
155 |
+
df.at[0, 'address_fuzzy_ratio'] = 100
|
156 |
+
df.at[last_row_index, 'address_fuzzy_ratio'] = 100
|
157 |
+
for i in range(1, last_row_index):
|
158 |
+
current_address = df['Address'].iloc[i]
|
159 |
+
previous_address = df['Address'].iloc[i - 1]
|
160 |
+
fuzzy_ratio = fuzz.ratio(previous_address, current_address)
|
161 |
+
df.at[i, 'address_fuzzy_ratio'] = fuzzy_ratio
|
162 |
+
df['address_fuzzy_ratio'] = pd.to_numeric(df['address_fuzzy_ratio'], errors='coerce')
|
163 |
+
|
164 |
+
# Calculate the duplicate groups for address column
|
165 |
+
address_group_counter = 1
|
166 |
+
df.at[0, 'address_based_group'] = str(address_group_counter)
|
167 |
+
group = df.at[0, 'Group_tax_bank']
|
168 |
+
for i in range(1, len(df)):
|
169 |
+
if df.at[i, 'address_fuzzy_ratio'] > 70:
|
170 |
+
df.at[i, 'address_based_group'] = df.at[i - 1, 'address_based_group']
|
171 |
+
else:
|
172 |
+
if df.at[i, 'Group_tax_bank'] != group:
|
173 |
+
address_group_counter = 1
|
174 |
+
group = df.at[i, 'Group_tax_bank']
|
175 |
+
else:
|
176 |
+
address_group_counter += 1
|
177 |
+
df.at[i, 'address_based_group'] = str(address_group_counter)
|
178 |
+
return df
|
179 |
+
|
180 |
+
def calculate_name_duplicacy(df):
|
181 |
+
df.sort_values(['Group_tax_bank_add', 'Name'], inplace=True)
|
182 |
+
df = df.reset_index(drop=True)
|
183 |
+
df.at[0, 'name_fuzzy_ratio'] = 100
|
184 |
+
df.at[last_row_index, 'name_fuzzy_ratio'] = 100
|
185 |
+
for i in range(1, last_row_index):
|
186 |
+
current_address = df['Name'].iloc[i]
|
187 |
+
previous_address = df['Name'].iloc[i - 1]
|
188 |
+
fuzzy_ratio = fuzz.ratio(previous_address, current_address)
|
189 |
+
df.at[i, 'name_fuzzy_ratio'] = fuzzy_ratio
|
190 |
+
df['name_fuzzy_ratio'] = pd.to_numeric(df['name_fuzzy_ratio'], errors='coerce')
|
191 |
+
|
192 |
+
# Calculate the duplicate groups for name column
|
193 |
+
name_group_counter = 1
|
194 |
+
df.at[0, 'name_based_group'] = str(name_group_counter)
|
195 |
+
group = df.at[0, 'Group_tax_bank_add']
|
196 |
+
for i in range(1, len(df)):
|
197 |
+
if df.at[i, 'name_fuzzy_ratio'] > 80:
|
198 |
+
df.at[i, 'name_based_group'] = df.at[i - 1, 'name_based_group']
|
199 |
+
else:
|
200 |
+
if df.at[i, 'Group_tax_bank_add'] != group:
|
201 |
+
name_group_counter = 1
|
202 |
+
group = df.at[i, 'Group_tax_bank_add']
|
203 |
+
else:
|
204 |
+
name_group_counter += 1
|
205 |
+
df.at[i, 'name_based_group'] = str(name_group_counter)
|
206 |
+
return df
|
207 |
+
|
208 |
+
def calculate_postcode_duplicacy(df):
|
209 |
+
df.sort_values(['Group_tax_bank_add_name', 'POSTCODE1'], inplace=True)
|
210 |
+
df = df.reset_index(drop=True)
|
211 |
+
df.at[0, 'postal_fuzzy_ratio'] = 100
|
212 |
+
df.at[last_row_index, 'postal_fuzzy_ratio'] = 100
|
213 |
+
for i in range(1, last_row_index):
|
214 |
+
current_address = df['POSTCODE1'].iloc[i]
|
215 |
+
previous_address = df['POSTCODE1'].iloc[i - 1]
|
216 |
+
fuzzy_ratio = fuzz.ratio(previous_address, current_address)
|
217 |
+
df.at[i, 'postal_fuzzy_ratio'] = fuzzy_ratio
|
218 |
+
df['postal_fuzzy_ratio'] = pd.to_numeric(df['postal_fuzzy_ratio'], errors='coerce')
|
219 |
+
|
220 |
+
# Calculate the duplicate groups for postcode column
|
221 |
+
postcode_group_counter = 1
|
222 |
+
df.at[0, 'postal_based_group'] = str(postcode_group_counter)
|
223 |
+
group = df.at[0, 'Group_tax_bank_add_name']
|
224 |
+
for i in range(1, len(df)):
|
225 |
+
if df.at[i, 'postal_fuzzy_ratio'] > 90:
|
226 |
+
df.at[i, 'postal_based_group'] = df.at[i - 1, 'postal_based_group']
|
227 |
+
else:
|
228 |
+
if df.at[i, 'Group_tax_bank_add_name'] != group:
|
229 |
+
postcode_group_counter = 1
|
230 |
+
group = df.at[i, 'Group_tax_bank_add_name']
|
231 |
+
else:
|
232 |
+
postcode_group_counter += 1
|
233 |
+
df.at[i, 'postal_based_group'] = str(postcode_group_counter)
|
234 |
+
return df
|
235 |
+
|
236 |
+
def calculate_accgrp_duplicacy(df):
|
237 |
+
df.sort_values(['Group_tax_bank_add_name_post', 'KTOKK'], inplace=True)
|
238 |
+
df = df.reset_index(drop=True)
|
239 |
+
df.at[0, 'accgrp_fuzzy_ratio'] = 100
|
240 |
+
df.at[last_row_index, 'accgrp_fuzzy_ratio'] = 100
|
241 |
+
for i in range(1, last_row_index):
|
242 |
+
current_address = df['KTOKK'].iloc[i]
|
243 |
+
previous_address = df['KTOKK'].iloc[i - 1]
|
244 |
+
fuzzy_ratio = fuzz.ratio(previous_address, current_address)
|
245 |
+
df.at[i, 'accgrp_fuzzy_ratio'] = fuzzy_ratio
|
246 |
+
df['accgrp_fuzzy_ratio'] = pd.to_numeric(df['accgrp_fuzzy_ratio'], errors='coerce')
|
247 |
+
|
248 |
+
# Calculate the duplicate groups for accgrp column
|
249 |
+
accgrp_group_counter = 1
|
250 |
+
df.at[0, 'accgrp_based_group'] = str(accgrp_group_counter)
|
251 |
+
group = df.at[0, 'Group_tax_bank_add_name_post']
|
252 |
+
for i in range(1, len(df)):
|
253 |
+
if df.at[i, 'accgrp_fuzzy_ratio'] >= 100:
|
254 |
+
df.at[i, 'accgrp_based_group'] = df.at[i - 1, 'accgrp_based_group']
|
255 |
+
else:
|
256 |
+
if df.at[i, 'Group_tax_bank_add_name_post'] != group:
|
257 |
+
accgrp_group_counter = 1
|
258 |
+
group = df.at[i, 'Group_tax_bank_add_name_post']
|
259 |
+
else:
|
260 |
+
accgrp_group_counter += 1
|
261 |
+
df.at[i, 'accgrp_based_group'] = str(accgrp_group_counter)
|
262 |
+
return df
|
263 |
+
|
264 |
+
# Search for the header row
|
265 |
+
def find_header_row(file_path, specified_headers, sheet_name):
|
266 |
+
workbook = openpyxl.load_workbook(file_path)
|
267 |
+
sheet = workbook[sheet_name]
|
268 |
+
header_row = None
|
269 |
+
temp_values = []
|
270 |
+
for row in sheet.iter_rows():
|
271 |
+
for cell in row:
|
272 |
+
if cell.value in specified_headers:
|
273 |
+
header_row = cell.row
|
274 |
+
break
|
275 |
+
if header_row is not None:
|
276 |
+
break
|
277 |
+
if header_row is None:
|
278 |
+
return
|
279 |
+
# Store values in temporary variable
|
280 |
+
for row in range(1, header_row):
|
281 |
+
for cell in sheet[row]:
|
282 |
+
temp_values.append(cell.value)
|
283 |
+
|
284 |
+
# Read DataFrame below the header row using pandas
|
285 |
+
df = pd.DataFrame(sheet.iter_rows(min_row=header_row + 1, values_only=True),
|
286 |
+
columns=[cell.value for cell in next(sheet.iter_rows(min_row=header_row))])
|
287 |
+
return header_row, temp_values, df
|
288 |
+
|
289 |
+
|
290 |
+
sheet_name1 = 'General Data '
|
291 |
+
|
292 |
+
specified_headers = ["LIFNR", "KTOKK", "NAMEFIRST", "NAMELAST", "NAME3", "NAME4", "STREET", "POSTCODE1", "CITY1", "COUNTRY", "REGION", "SMTPADDR", "BANKL", "BANKN", "TAXTYPE", "TAXNUM", "Unnamed: 16", "Unnamed: 17", "Unnamed: 18"]
|
293 |
+
header_row, temp_values, df = find_header_row(file, specified_headers, sheet_name1)
|
294 |
+
# Replace null values with a blank space
|
295 |
+
df = df.fillna(" ")
|
296 |
+
|
297 |
+
# Creating new columns by concatenating original columns
|
298 |
+
df['Address'] = df['STREET'].astype(str) + '-' + df['CITY1'].astype(str) + '-' + df['COUNTRY'].astype(str) + '-' + \
|
299 |
+
df['REGION'].astype(str)
|
300 |
+
df['Name'] = df['NAMEFIRST'].astype(str) + '-' + df['NAMELAST'].astype(str) + '-' + df['NAME3'].astype(str) + '-' + \
|
301 |
+
df['NAME4'].astype(str)
|
302 |
+
df['Bank'] = df['BANKL'].astype(str) + '-' + df['BANKN'].astype(str)
|
303 |
+
df['Tax'] = df['TAXTYPE'].astype(str) + '-' + df['TAXNUM'].astype(str)
|
304 |
+
|
305 |
+
# Converting all concatenated columns to lowercase
|
306 |
+
df['Name'] = df['Name'].str.lower()
|
307 |
+
df['Address'] = df['Address'].str.lower()
|
308 |
+
df['Bank'] = df['Bank'].str.lower()
|
309 |
+
df['Tax'] = df['Tax'].str.lower()
|
310 |
+
|
311 |
+
# Create new columns with the following names for fuzzy ratio
|
312 |
+
df['name_fuzzy_ratio'] = ''
|
313 |
+
df['accgrp_fuzzy_ratio'] = ''
|
314 |
+
df['address_fuzzy_ratio'] = ''
|
315 |
+
df['bank_fuzzy_ratio'] = ''
|
316 |
+
df['tax_fuzzy_ratio'] = ''
|
317 |
+
df['postal_fuzzy_ratio'] = ''
|
318 |
+
|
319 |
+
# Create new columns with the following names for crearing groups
|
320 |
+
df['name_based_group'] = ''
|
321 |
+
df['accgrp_based_group'] = ''
|
322 |
+
df['address_based_group'] = ''
|
323 |
+
df['bank_based_group'] = ''
|
324 |
+
df['tax_based_group'] = ''
|
325 |
+
df['postal_based_group'] = ''
|
326 |
+
|
327 |
+
# Calculate last row index value
|
328 |
+
last_row_index = len(df) - 1
|
329 |
+
|
330 |
+
# Calculate the fuzzy ratios for tax column
|
331 |
+
if 'Tax' in check:
|
332 |
+
df = calculate_tax_duplicacy(df)
|
333 |
+
df['Group_tax'] = df.apply(lambda row: '{}'.format(row['tax_based_group']), axis=1)
|
334 |
+
|
335 |
+
# Calculate the fuzzy ratios for bank column
|
336 |
+
if 'Bank' in check:
|
337 |
+
df = calculate_bank_duplicacy(df)
|
338 |
+
df['Group_tax_bank'] = df.apply(lambda row: '{}_{}'.format(row['tax_based_group'], row['bank_based_group']), axis=1)
|
339 |
+
|
340 |
+
# Calculate the fuzzy ratios for address column
|
341 |
+
if 'Address' in check:
|
342 |
+
df = calculate_address_duplicacy(df)
|
343 |
+
df['Group_tax_bank_add'] = df.apply(lambda row: '{}_{}'.format(row['Group_tax_bank'], row['address_based_group']),
|
344 |
+
axis=1)
|
345 |
+
|
346 |
+
# Calculate the fuzzy ratios for name column
|
347 |
+
if 'Name' in check:
|
348 |
+
df = calculate_name_duplicacy(df)
|
349 |
+
df['Group_tax_bank_add_name'] = df.apply(
|
350 |
+
lambda row: '{}_{}'.format(row['Group_tax_bank_add'], row['name_based_group']), axis=1)
|
351 |
+
|
352 |
+
# Calculate the fuzzy ratios for postcode column
|
353 |
+
if 'PostCode' in check:
|
354 |
+
df = calculate_postcode_duplicacy(df)
|
355 |
+
df['Group_tax_bank_add_name_post'] = df.apply(
|
356 |
+
lambda row: '{}_{}'.format(row['Group_tax_bank_add_name'], row['postal_based_group']), axis=1)
|
357 |
+
|
358 |
+
# Calculate the fuzzy ratios for accgrp column
|
359 |
+
if 'AccGrp' in check:
|
360 |
+
df = calculate_accgrp_duplicacy(df)
|
361 |
+
df['Group_tax_bank_add_name_post_accgrp'] = df.apply(
|
362 |
+
lambda row: '{}_{}'.format(row['Group_tax_bank_add_name_post'], row['accgrp_based_group']), axis=1)
|
363 |
+
|
364 |
+
# Find the final duplicate groups in AND condition
|
365 |
+
duplicate_groups = df['Group_tax_bank_add_name_post_accgrp'].duplicated(keep=False)
|
366 |
+
df['Remarks'] = ['Duplicate' if is_duplicate else 'Unique' for is_duplicate in duplicate_groups]
|
367 |
+
|
368 |
+
# Ask gemini to analyse the duplicate columns
|
369 |
+
gemini_analysis(df)
|
370 |
+
|
371 |
+
# Drop the columns related to fuzzy ratios and groups
|
372 |
+
columns_to_drop = ['name_fuzzy_ratio', 'accgrp_fuzzy_ratio', 'address_fuzzy_ratio', 'bank_fuzzy_ratio',
|
373 |
+
'tax_fuzzy_ratio', 'postal_fuzzy_ratio', 'name_based_group', 'accgrp_based_group',
|
374 |
+
'address_based_group', 'bank_based_group', 'tax_based_group', 'postal_based_group',
|
375 |
+
'Group_tax_bank', 'Group_tax_bank_add', 'Group_tax_bank_add_name',
|
376 |
+
'Group_tax_bank_add_name_post', 'Group_tax', 'Group_tax_bank_add_name_post_accgrp']
|
377 |
+
df = df.drop(columns=columns_to_drop, axis=1)
|
378 |
+
|
379 |
+
df.to_excel('output/output.xlsx', index=False)
|
380 |
+
|
381 |
+
excel_writer = pd.ExcelWriter('output/output.xlsx', engine='openpyxl')
|
382 |
+
df.to_excel(excel_writer, index=False, sheet_name='Sheet1')
|
383 |
+
|
384 |
+
# Access the workbook
|
385 |
+
workbook = excel_writer.book
|
386 |
+
worksheet = workbook['Sheet1']
|
387 |
+
|
388 |
+
# Apply row coloring based on the value in the 'Remarks' column and also wrap the texts
|
389 |
+
duplicate_fill = PatternFill(start_color="FFFF00", end_color="FFFF00", fill_type="solid")
|
390 |
+
for idx, row in df.iterrows():
|
391 |
+
if row['Remarks'] == 'Duplicate':
|
392 |
+
for cell in worksheet[idx + 2]:
|
393 |
+
cell.alignment = Alignment(wrap_text=True)
|
394 |
+
cell.fill = duplicate_fill
|
395 |
+
|
396 |
+
# Iterate over columns and set their width
|
397 |
+
for col in worksheet.columns:
|
398 |
+
col_letter = col[0].column_letter
|
399 |
+
worksheet.column_dimensions[col_letter].width = 28
|
400 |
+
|
401 |
+
# Iterate over rows and set their height
|
402 |
+
for row in worksheet.iter_rows():
|
403 |
+
worksheet.row_dimensions[row[0].row].height = 20
|
404 |
+
|
405 |
+
# Save the changes
|
406 |
+
excel_writer.close()
|
407 |
+
|
408 |
+
output_path = os.path.join(app.config['OUTPUT_FOLDER'], 'output.xlsx')
|
409 |
+
|
410 |
+
return output_path
|
411 |
+
|
412 |
+
def save_error_message(error_message):
|
413 |
+
with open('static/error.txt', 'w') as f:
|
414 |
+
f.write(error_message)
|
415 |
+
|
416 |
+
@app.route('/', methods=['GET', 'POST'])
|
417 |
+
def upload_file():
|
418 |
+
global output_file
|
419 |
+
error_message = None
|
420 |
+
if request.method == 'POST':
|
421 |
+
file = request.files['file']
|
422 |
+
selected_options = request.form.getlist('option')
|
423 |
+
if file:
|
424 |
+
try:
|
425 |
+
file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
|
426 |
+
file.save(file_path)
|
427 |
+
output_file = process_csv(file_path)
|
428 |
+
return redirect(url_for('upload_file'))
|
429 |
+
except Exception as e:
|
430 |
+
error_message = str(e)
|
431 |
+
save_error_message(error_message)
|
432 |
+
return render_template('index.html', output_file=output_file, error_message=error_message)
|
433 |
+
|
434 |
+
|
435 |
+
def save_file_dialog(default_filename="output.xlsx", filetypes=(("XLSX files", ".xlsx"), ("All files", ".*"))):
|
436 |
+
root = tk.Tk()
|
437 |
+
root.withdraw()
|
438 |
+
file_path = filedialog.asksaveasfilename(initialfile=default_filename, filetypes=filetypes, defaultextension=".xlsx")
|
439 |
+
return file_path
|
440 |
+
|
441 |
+
|
442 |
+
@app.route('/downloads/output.xlsx')
|
443 |
+
def download_file():
|
444 |
+
output_file_path = os.path.join(app.config['OUTPUT_FOLDER'], 'output.xlsx')
|
445 |
+
selected_path = save_file_dialog()
|
446 |
+
if selected_path:
|
447 |
+
shutil.copyfile(output_file_path, selected_path)
|
448 |
+
return redirect(url_for('upload_file'))
|
449 |
+
|
450 |
+
if __name__ == '__main__':
|
451 |
+
app.run(debug=True)
|
output/readme.txt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Deduplication
|
requirement.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
os
|
3 |
+
shutil
|
4 |
+
tkinter
|
5 |
+
openpyxl
|
6 |
+
pandas
|
7 |
+
requests
|
8 |
+
fuzzywuzzy
|
9 |
+
google-generativeai
|
static/script.js
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
function submitForm() {
|
2 |
+
var fileInput = document.getElementById('csvFile');
|
3 |
+
var processingMsg = document.getElementById('processingMsg');
|
4 |
+
|
5 |
+
if (fileInput.files.length === 0) {
|
6 |
+
alert('Please select a CSV file.');
|
7 |
+
return;
|
8 |
+
}
|
9 |
+
|
10 |
+
var formData = new FormData();
|
11 |
+
formData.append('csvFile', fileInput.files[0]);
|
12 |
+
|
13 |
+
// Show processing message
|
14 |
+
document.getElementById('uploadForm').classList.add('hidden');
|
15 |
+
processingMsg.classList.remove('hidden');
|
16 |
+
|
17 |
+
// Simulate backend processing (replace with actual AJAX call)
|
18 |
+
setTimeout(function() {
|
19 |
+
// After processing (simulated with setTimeout), show success message
|
20 |
+
processingMsg.innerHTML = '<p>File processed successfully. <a href="#" onclick="downloadProcessedFile()">Download processed file</a></p>';
|
21 |
+
}, 2000);
|
22 |
+
}
|
23 |
+
|
24 |
+
function downloadProcessedFile() {
|
25 |
+
// Here you can add code to download the processed file
|
26 |
+
alert('Downloading processed file...');
|
27 |
+
// Replace this alert with your actual download logic
|
28 |
+
}
|
29 |
+
|
30 |
+
document.getElementById('submitBtn').addEventListener('click', function() {
|
31 |
+
var fileInput = document.getElementById('csvFile');
|
32 |
+
var file = fileInput.files[0];
|
33 |
+
if (file) {
|
34 |
+
var formData = new FormData();
|
35 |
+
formData.append('file', file);
|
36 |
+
|
37 |
+
// Capture checkbox values
|
38 |
+
var checkboxes = document.querySelectorAll('input[name="option"]:checked');
|
39 |
+
checkboxes.forEach(function(checkbox) {
|
40 |
+
formData.append('option', checkbox.value);
|
41 |
+
});
|
42 |
+
|
43 |
+
var xhr = new XMLHttpRequest();
|
44 |
+
xhr.open('POST', '/');
|
45 |
+
xhr.upload.onprogress = function(event) {
|
46 |
+
if (event.lengthComputable) {
|
47 |
+
var percentComplete = (event.loaded / event.total) * 100;
|
48 |
+
document.getElementById('progressBar').style.width = percentComplete + '%';
|
49 |
+
}
|
50 |
+
};
|
51 |
+
xhr.onloadstart = function() {
|
52 |
+
document.getElementById('processingMsg').classList.remove('hidden');
|
53 |
+
};
|
54 |
+
xhr.onloadend = function() {
|
55 |
+
document.getElementById('processingMsg').classList.add('hidden');
|
56 |
+
document.getElementById('downloadBtn').classList.remove('hidden');
|
57 |
+
var response = JSON.parse(xhr.responseText);
|
58 |
+
document.getElementById('downloadBtn').addEventListener('click', function() {
|
59 |
+
window.location.href = '/downloads/output.xlsx';
|
60 |
+
});
|
61 |
+
};
|
62 |
+
xhr.send(formData);
|
63 |
+
}
|
64 |
+
});
|
static/styles.css
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
font-family: Arial, sans-serif;
|
3 |
+
background-color: #f0f0f0;
|
4 |
+
margin: 0;
|
5 |
+
padding: 100px 20px;
|
6 |
+
}
|
7 |
+
|
8 |
+
.container {
|
9 |
+
max-width: 600px;
|
10 |
+
margin: 0 auto;
|
11 |
+
background-color: #fff;
|
12 |
+
padding: 20px;
|
13 |
+
border-radius: 5px;
|
14 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
|
15 |
+
display: flex;
|
16 |
+
flex-direction: column;
|
17 |
+
align-items: center;
|
18 |
+
justify-content: center;
|
19 |
+
}
|
20 |
+
|
21 |
+
h1 {
|
22 |
+
text-align: center;
|
23 |
+
color: #333;
|
24 |
+
}
|
25 |
+
|
26 |
+
form {
|
27 |
+
display: flex;
|
28 |
+
flex-direction: column;
|
29 |
+
}
|
30 |
+
|
31 |
+
input[type="file"] {
|
32 |
+
margin-bottom: 10px;
|
33 |
+
}
|
34 |
+
|
35 |
+
button {
|
36 |
+
padding: 10px 20px;
|
37 |
+
background-color: #007bff;
|
38 |
+
color: #fff;
|
39 |
+
border: none;
|
40 |
+
cursor: pointer;
|
41 |
+
}
|
42 |
+
|
43 |
+
button:hover {
|
44 |
+
background-color: #0056b3;
|
45 |
+
}
|
46 |
+
|
47 |
+
#processingMsg {
|
48 |
+
text-align: center;
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
.hidden {
|
53 |
+
display: none;
|
54 |
+
}
|
55 |
+
|
56 |
+
#downloadBtn {
|
57 |
+
border-box: 5px;
|
58 |
+
margin-top: 20px;
|
59 |
+
}
|
60 |
+
|
61 |
+
#downloadBtn button {
|
62 |
+
border-box: 5px;
|
63 |
+
padding: 10px 20px;
|
64 |
+
}
|
65 |
+
|
66 |
+
.options-container {
|
67 |
+
margin-top: 20px;
|
68 |
+
display: flex;
|
69 |
+
flex-wrap: wrap;
|
70 |
+
justify-content: center;
|
71 |
+
}
|
72 |
+
|
73 |
+
.option {
|
74 |
+
margin-right: 20px;
|
75 |
+
margin-bottom: 10px;
|
76 |
+
}
|
77 |
+
|
78 |
+
.option label {
|
79 |
+
margin-left: 5px;
|
80 |
+
}
|
81 |
+
|
82 |
+
.options-wrapper {
|
83 |
+
background-color: #f2f2f2;
|
84 |
+
border-radius: 8px;
|
85 |
+
padding: 20px;
|
86 |
+
margin-top: 20px;
|
87 |
+
}
|
88 |
+
|
89 |
+
#checkbox-heading {
|
90 |
+
text-align: center;
|
91 |
+
font-size: 16px;
|
92 |
+
margin-bottom: 10px;
|
93 |
+
}
|
94 |
+
|
95 |
+
#explanation-note {
|
96 |
+
text-align: center;
|
97 |
+
margin-top: 20px;
|
98 |
+
font-style: italic;
|
99 |
+
}
|
100 |
+
|
101 |
+
#submitBtn {
|
102 |
+
margin-top: 20px;
|
103 |
+
border-radius: 5px;
|
104 |
+
}
|
105 |
+
|
106 |
+
.spinner {
|
107 |
+
border: 4px solid rgba(0, 0, 0, 0.1);
|
108 |
+
border-left-color: #333;
|
109 |
+
border-radius: 50%;
|
110 |
+
width: 50px;
|
111 |
+
height: 50px;
|
112 |
+
animation: spin 1s linear infinite;
|
113 |
+
margin: 20px auto;
|
114 |
+
}
|
115 |
+
|
116 |
+
@keyframes spin {
|
117 |
+
0% { transform: rotate(0deg); }
|
118 |
+
100% { transform: rotate(360deg); }
|
119 |
+
}
|
templates/index.html
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>CSV File Upload</title>
|
7 |
+
<link rel="stylesheet" href="{{ url_for('static', filename='styles.css') }}">
|
8 |
+
</head>
|
9 |
+
<body>
|
10 |
+
<div class="container">
|
11 |
+
<h1>Vendor Master De-Duplication Tool</h1>
|
12 |
+
<form id="uploadForm" enctype="multipart/form-data">
|
13 |
+
<input type="file" name="file" id="csvFile" accept=".xlsx">
|
14 |
+
</form>
|
15 |
+
<div class="options-wrapper">
|
16 |
+
<div id="checkbox-heading">Select the options based on which duplication check will be performed and submit</div>
|
17 |
+
<div class="options-container">
|
18 |
+
<div class="option">
|
19 |
+
<input type="checkbox" name="option" value="Tax" id="option1" checked>
|
20 |
+
<label for="option1">Tax</label>
|
21 |
+
</div>
|
22 |
+
<div class="option">
|
23 |
+
<input type="checkbox" name="option" value="Bank" id="option2" checked>
|
24 |
+
<label for="option2">Bank</label>
|
25 |
+
</div>
|
26 |
+
<div class="option">
|
27 |
+
<input type="checkbox" name="option" value="Address" id="option3" checked>
|
28 |
+
<label for="option3">Address</label>
|
29 |
+
</div>
|
30 |
+
<div class="option">
|
31 |
+
<input type="checkbox" name="option" value="Name" id="option4" checked>
|
32 |
+
<label for="option4">Name</label>
|
33 |
+
</div>
|
34 |
+
<div class="option">
|
35 |
+
<input type="checkbox" name="option" value="PostCode" id="option5" checked>
|
36 |
+
<label for="option5">PostCode</label>
|
37 |
+
</div>
|
38 |
+
<div class="option">
|
39 |
+
<input type="checkbox" name="option" value="AccGrp" id="option6" checked>
|
40 |
+
<label for="option6">AccGrp</label>
|
41 |
+
</div>
|
42 |
+
</div>
|
43 |
+
</div>
|
44 |
+
<button type="button" id="submitBtn">Submit</button>
|
45 |
+
<div id="processingMsg" class="hidden">
|
46 |
+
<div class="spinner"></div>
|
47 |
+
</div>
|
48 |
+
<div id="progressBar"></div>
|
49 |
+
<div id="downloadBtn" class="hidden">
|
50 |
+
<a id="downloadLink" href="{{ url_for('download_file', filename='output.xlsx') }}">
|
51 |
+
<button>Download Processed XLSX</button>
|
52 |
+
</a>
|
53 |
+
</div>
|
54 |
+
<div id="explanation-note">
|
55 |
+
Note: The last column titled 'explanation' in output file contains the analysis for potential duplicates with the following row.
|
56 |
+
</div>
|
57 |
+
</div>
|
58 |
+
<script src="{{ url_for('static', filename='script.js') }}"></script>
|
59 |
+
</body>
|
60 |
+
</html>
|
uploads/readme.txt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Deduplication
|