MoGe / utils3d /numpy /transforms.py
Ruicheng's picture
first commit
ec0c8fa
raw
history blame
36.5 kB
import numpy as np
from typing import *
from numbers import Number
from ._helpers import batched
__all__ = [
'perspective',
'perspective_from_fov',
'perspective_from_fov_xy',
'intrinsics_from_focal_center',
'intrinsics_from_fov',
'view_look_at',
'extrinsics_look_at',
'perspective_to_intrinsics',
'perspective_to_near_far',
'intrinsics_to_perspective',
'extrinsics_to_view',
'view_to_extrinsics',
'normalize_intrinsics',
'crop_intrinsics',
'pixel_to_uv',
'pixel_to_ndc',
'uv_to_pixel',
'project_depth',
'depth_buffer_to_linear',
'unproject_cv',
'unproject_gl',
'project_cv',
'project_gl',
'quaternion_to_matrix',
'axis_angle_to_matrix',
'matrix_to_quaternion',
'extrinsics_to_essential',
'euler_axis_angle_rotation',
'euler_angles_to_matrix',
'skew_symmetric',
'rotation_matrix_from_vectors',
'ray_intersection',
'se3_matrix',
'slerp_quaternion',
'slerp_vector',
'lerp',
'lerp_se3_matrix',
'piecewise_lerp',
'piecewise_lerp_se3_matrix',
'apply_transform'
]
@batched(0,0,0,0)
def perspective(
fov_y: Union[float, np.ndarray],
aspect: Union[float, np.ndarray],
near: Union[float, np.ndarray],
far: Union[float, np.ndarray]
) -> np.ndarray:
"""
Get OpenGL perspective matrix
Args:
fov_y (float | np.ndarray): field of view in y axis
aspect (float | np.ndarray): aspect ratio
near (float | np.ndarray): near plane to clip
far (float | np.ndarray): far plane to clip
Returns:
(np.ndarray): [..., 4, 4] perspective matrix
"""
N = fov_y.shape[0]
ret = np.zeros((N, 4, 4), dtype=fov_y.dtype)
ret[:, 0, 0] = 1. / (np.tan(fov_y / 2) * aspect)
ret[:, 1, 1] = 1. / (np.tan(fov_y / 2))
ret[:, 2, 2] = (near + far) / (near - far)
ret[:, 2, 3] = 2. * near * far / (near - far)
ret[:, 3, 2] = -1.
return ret
def perspective_from_fov(
fov: Union[float, np.ndarray],
width: Union[int, np.ndarray],
height: Union[int, np.ndarray],
near: Union[float, np.ndarray],
far: Union[float, np.ndarray]
) -> np.ndarray:
"""
Get OpenGL perspective matrix from field of view in largest dimension
Args:
fov (float | np.ndarray): field of view in largest dimension
width (int | np.ndarray): image width
height (int | np.ndarray): image height
near (float | np.ndarray): near plane to clip
far (float | np.ndarray): far plane to clip
Returns:
(np.ndarray): [..., 4, 4] perspective matrix
"""
fov_y = 2 * np.arctan(np.tan(fov / 2) * height / np.maximum(width, height))
aspect = width / height
return perspective(fov_y, aspect, near, far)
def perspective_from_fov_xy(
fov_x: Union[float, np.ndarray],
fov_y: Union[float, np.ndarray],
near: Union[float, np.ndarray],
far: Union[float, np.ndarray]
) -> np.ndarray:
"""
Get OpenGL perspective matrix from field of view in x and y axis
Args:
fov_x (float | np.ndarray): field of view in x axis
fov_y (float | np.ndarray): field of view in y axis
near (float | np.ndarray): near plane to clip
far (float | np.ndarray): far plane to clip
Returns:
(np.ndarray): [..., 4, 4] perspective matrix
"""
aspect = np.tan(fov_x / 2) / np.tan(fov_y / 2)
return perspective(fov_y, aspect, near, far)
def intrinsics_from_focal_center(
fx: Union[float, np.ndarray],
fy: Union[float, np.ndarray],
cx: Union[float, np.ndarray],
cy: Union[float, np.ndarray],
dtype: Optional[np.dtype] = np.float32
) -> np.ndarray:
"""
Get OpenCV intrinsics matrix
Returns:
(np.ndarray): [..., 3, 3] OpenCV intrinsics matrix
"""
if any(isinstance(x, np.ndarray) for x in (fx, fy, cx, cy)):
dtype = np.result_type(fx, fy, cx, cy)
fx, fy, cx, cy = np.broadcast_arrays(fx, fy, cx, cy)
ret = np.zeros((*fx.shape, 3, 3), dtype=dtype)
ret[..., 0, 0] = fx
ret[..., 1, 1] = fy
ret[..., 0, 2] = cx
ret[..., 1, 2] = cy
ret[..., 2, 2] = 1.
return ret
def intrinsics_from_fov(
fov_max: Union[float, np.ndarray] = None,
fov_min: Union[float, np.ndarray] = None,
fov_x: Union[float, np.ndarray] = None,
fov_y: Union[float, np.ndarray] = None,
width: Union[int, np.ndarray] = None,
height: Union[int, np.ndarray] = None,
) -> np.ndarray:
"""
Get normalized OpenCV intrinsics matrix from given field of view.
You can provide either fov_max, fov_min, fov_x or fov_y
Args:
width (int | np.ndarray): image width
height (int | np.ndarray): image height
fov_max (float | np.ndarray): field of view in largest dimension
fov_min (float | np.ndarray): field of view in smallest dimension
fov_x (float | np.ndarray): field of view in x axis
fov_y (float | np.ndarray): field of view in y axis
Returns:
(np.ndarray): [..., 3, 3] OpenCV intrinsics matrix
"""
if fov_max is not None:
fx = np.maximum(width, height) / width / (2 * np.tan(fov_max / 2))
fy = np.maximum(width, height) / height / (2 * np.tan(fov_max / 2))
elif fov_min is not None:
fx = np.minimum(width, height) / width / (2 * np.tan(fov_min / 2))
fy = np.minimum(width, height) / height / (2 * np.tan(fov_min / 2))
elif fov_x is not None and fov_y is not None:
fx = 1 / (2 * np.tan(fov_x / 2))
fy = 1 / (2 * np.tan(fov_y / 2))
elif fov_x is not None:
fx = 1 / (2 * np.tan(fov_x / 2))
fy = fx * width / height
elif fov_y is not None:
fy = 1 / (2 * np.tan(fov_y / 2))
fx = fy * height / width
cx = 0.5
cy = 0.5
ret = intrinsics_from_focal_center(fx, fy, cx, cy)
return ret
@batched(1,1,1)
def view_look_at(
eye: np.ndarray,
look_at: np.ndarray,
up: np.ndarray
) -> np.ndarray:
"""
Get OpenGL view matrix looking at something
Args:
eye (np.ndarray): [..., 3] the eye position
look_at (np.ndarray): [..., 3] the position to look at
up (np.ndarray): [..., 3] head up direction (y axis in screen space). Not necessarily othogonal to view direction
Returns:
(np.ndarray): [..., 4, 4], view matrix
"""
z = eye - look_at
x = np.cross(up, z)
y = np.cross(z, x)
# x = np.cross(y, z)
x = x / np.linalg.norm(x, axis=-1, keepdims=True)
y = y / np.linalg.norm(y, axis=-1, keepdims=True)
z = z / np.linalg.norm(z, axis=-1, keepdims=True)
R = np.stack([x, y, z], axis=-2)
t = -np.matmul(R, eye[..., None])
return np.concatenate([
np.concatenate([R, t], axis=-1),
np.array([[[0., 0., 0., 1.]]]).repeat(eye.shape[0], axis=0)
], axis=-2)
@batched(1,1,1)
def extrinsics_look_at(
eye: np.ndarray,
look_at: np.ndarray,
up: np.ndarray
) -> np.ndarray:
"""
Get OpenCV extrinsics matrix looking at something
Args:
eye (np.ndarray): [..., 3] the eye position
look_at (np.ndarray): [..., 3] the position to look at
up (np.ndarray): [..., 3] head up direction (-y axis in screen space). Not necessarily othogonal to view direction
Returns:
(np.ndarray): [..., 4, 4], extrinsics matrix
"""
z = look_at - eye
x = np.cross(-up, z)
y = np.cross(z, x)
# x = np.cross(y, z)
x = x / np.linalg.norm(x, axis=-1, keepdims=True)
y = y / np.linalg.norm(y, axis=-1, keepdims=True)
z = z / np.linalg.norm(z, axis=-1, keepdims=True)
R = np.stack([x, y, z], axis=-2)
t = -np.matmul(R, eye[..., None])
return np.concatenate([
np.concatenate([R, t], axis=-1),
np.array([[[0., 0., 0., 1.]]], dtype=eye.dtype).repeat(eye.shape[0], axis=0)
], axis=-2)
def perspective_to_intrinsics(
perspective: np.ndarray
) -> np.ndarray:
"""
OpenGL perspective matrix to OpenCV intrinsics
Args:
perspective (np.ndarray): [..., 4, 4] OpenGL perspective matrix
Returns:
(np.ndarray): shape [..., 3, 3] OpenCV intrinsics
"""
ret = np.array([[0.5, 0., 0.5], [0., -0.5, 0.5], [0., 0., 1.]], dtype=perspective.dtype) \
@ perspective[..., [0, 1, 3], :3] \
@ np.diag(np.array([1, -1, -1], dtype=perspective.dtype))
return ret
def perspective_to_near_far(perspective: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Get near and far planes from OpenGL perspective matrix
Args:
"""
a, b = perspective[..., 2, 2], perspective[..., 2, 3]
near, far = b / (a - 1), b / (a + 1)
return near, far
@batched(2,0,0)
def intrinsics_to_perspective(
intrinsics: np.ndarray,
near: Union[float, np.ndarray],
far: Union[float, np.ndarray],
) -> np.ndarray:
"""
OpenCV intrinsics to OpenGL perspective matrix
NOTE: not work for tile-shifting intrinsics currently
Args:
intrinsics (np.ndarray): [..., 3, 3] OpenCV intrinsics matrix
near (float | np.ndarray): [...] near plane to clip
far (float | np.ndarray): [...] far plane to clip
Returns:
(np.ndarray): [..., 4, 4] OpenGL perspective matrix
"""
N = intrinsics.shape[0]
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 1, 1]
cx, cy = intrinsics[:, 0, 2], intrinsics[:, 1, 2]
ret = np.zeros((N, 4, 4), dtype=intrinsics.dtype)
ret[:, 0, 0] = 2 * fx
ret[:, 1, 1] = 2 * fy
ret[:, 0, 2] = -2 * cx + 1
ret[:, 1, 2] = 2 * cy - 1
ret[:, 2, 2] = (near + far) / (near - far)
ret[:, 2, 3] = 2. * near * far / (near - far)
ret[:, 3, 2] = -1.
return ret
@batched(2)
def extrinsics_to_view(
extrinsics: np.ndarray
) -> np.ndarray:
"""
OpenCV camera extrinsics to OpenGL view matrix
Args:
extrinsics (np.ndarray): [..., 4, 4] OpenCV camera extrinsics matrix
Returns:
(np.ndarray): [..., 4, 4] OpenGL view matrix
"""
return extrinsics * np.array([1, -1, -1, 1], dtype=extrinsics.dtype)[:, None]
@batched(2)
def view_to_extrinsics(
view: np.ndarray
) -> np.ndarray:
"""
OpenGL view matrix to OpenCV camera extrinsics
Args:
view (np.ndarray): [..., 4, 4] OpenGL view matrix
Returns:
(np.ndarray): [..., 4, 4] OpenCV camera extrinsics matrix
"""
return view * np.array([1, -1, -1, 1], dtype=view.dtype)[:, None]
@batched(2, 0, 0, None)
def normalize_intrinsics(
intrinsics: np.ndarray,
width: Union[int, np.ndarray],
height: Union[int, np.ndarray],
integer_pixel_centers: bool = True
) -> np.ndarray:
"""
Normalize intrinsics from pixel cooridnates to uv coordinates
Args:
intrinsics (np.ndarray): [..., 3, 3] camera intrinsics(s) to normalize
width (int | np.ndarray): [...] image width(s)
height (int | np.ndarray): [...] image height(s)
integer_pixel_centers (bool): whether the integer pixel coordinates are at the center of the pixel. If False, the integer coordinates are at the left-top corner of the pixel.
Returns:
(np.ndarray): [..., 3, 3] normalized camera intrinsics(s)
"""
zeros = np.zeros_like(width)
ones = np.ones_like(width)
if integer_pixel_centers:
transform = np.stack([
1 / width, zeros, 0.5 / width,
zeros, 1 / height, 0.5 / height,
zeros, zeros, ones
]).reshape(*zeros.shape, 3, 3)
else:
transform = np.stack([
1 / width, zeros, zeros,
zeros, 1 / height, zeros,
zeros, zeros, ones
]).reshape(*zeros.shape, 3, 3)
return transform @ intrinsics
@batched(2,0,0,0,0,0,0)
def crop_intrinsics(
intrinsics: np.ndarray,
width: Union[int, np.ndarray],
height: Union[int, np.ndarray],
left: Union[int, np.ndarray],
top: Union[int, np.ndarray],
crop_width: Union[int, np.ndarray],
crop_height: Union[int, np.ndarray]
) -> np.ndarray:
"""
Evaluate the new intrinsics(s) after crop the image: cropped_img = img[top:top+crop_height, left:left+crop_width]
Args:
intrinsics (np.ndarray): [..., 3, 3] camera intrinsics(s) to crop
width (int | np.ndarray): [...] image width(s)
height (int | np.ndarray): [...] image height(s)
left (int | np.ndarray): [...] left crop boundary
top (int | np.ndarray): [...] top crop boundary
crop_width (int | np.ndarray): [...] crop width
crop_height (int | np.ndarray): [...] crop height
Returns:
(np.ndarray): [..., 3, 3] cropped camera intrinsics(s)
"""
zeros = np.zeros_like(width)
ones = np.ones_like(width)
transform = np.stack([
width / crop_width, zeros, -left / crop_width,
zeros, height / crop_height, -top / crop_height,
zeros, zeros, ones
]).reshape(*zeros.shape, 3, 3)
return transform @ intrinsics
@batched(1,0,0)
def pixel_to_uv(
pixel: np.ndarray,
width: Union[int, np.ndarray],
height: Union[int, np.ndarray]
) -> np.ndarray:
"""
Args:
pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1)
width (int | np.ndarray): [...] image width(s)
height (int | np.ndarray): [...] image height(s)
Returns:
(np.ndarray): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1)
"""
if not np.issubdtype(pixel.dtype, np.floating):
pixel = pixel.astype(np.float32)
dtype = pixel.dtype
uv = (pixel + np.array(0.5, dtype=dtype)) / np.stack([width, height], axis=-1)
return uv
@batched(1,0,0)
def uv_to_pixel(
uv: np.ndarray,
width: Union[int, np.ndarray],
height: Union[int, np.ndarray]
) -> np.ndarray:
"""
Args:
pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1)
width (int | np.ndarray): [...] image width(s)
height (int | np.ndarray): [...] image height(s)
Returns:
(np.ndarray): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1)
"""
pixel = uv * np.stack([width, height], axis=-1) - 0.5
return pixel
@batched(1,0,0)
def pixel_to_ndc(
pixel: np.ndarray,
width: Union[int, np.ndarray],
height: Union[int, np.ndarray]
) -> np.ndarray:
"""
Args:
pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1)
width (int | np.ndarray): [...] image width(s)
height (int | np.ndarray): [...] image height(s)
Returns:
(np.ndarray): [..., 2] pixel coordinrates defined in ndc space, the range is (-1, 1)
"""
if not np.issubdtype(pixel.dtype, np.floating):
pixel = pixel.astype(np.float32)
dtype = pixel.dtype
ndc = (pixel + np.array(0.5, dtype=dtype)) / (np.stack([width, height], dim=-1) * np.array([2, -2], dtype=dtype)) \
+ np.array([-1, 1], dtype=dtype)
return ndc
@batched(0,0,0)
def project_depth(
depth: np.ndarray,
near: Union[float, np.ndarray],
far: Union[float, np.ndarray]
) -> np.ndarray:
"""
Project linear depth to depth value in screen space
Args:
depth (np.ndarray): [...] depth value
near (float | np.ndarray): [...] near plane to clip
far (float | np.ndarray): [...] far plane to clip
Returns:
(np.ndarray): [..., 1] depth value in screen space, value ranging in [0, 1]
"""
return (far - near * far / depth) / (far - near)
@batched(0,0,0)
def depth_buffer_to_linear(
depth_buffer: np.ndarray,
near: Union[float, np.ndarray],
far: Union[float, np.ndarray]
) -> np.ndarray:
"""
OpenGL depth buffer to linear depth
Args:
depth_buffer (np.ndarray): [...] depth value
near (float | np.ndarray): [...] near plane to clip
far (float | np.ndarray): [...] far plane to clip
Returns:
(np.ndarray): [..., 1] linear depth
"""
return near * far / (far - (far - near) * depth_buffer)
@batched(2,2,2,2)
def project_gl(
points: np.ndarray,
model: np.ndarray = None,
view: np.ndarray = None,
perspective: np.ndarray = None
) -> Tuple[np.ndarray, np.ndarray]:
"""
Project 3D points to 2D following the OpenGL convention (except for row major matrice)
Args:
points (np.ndarray): [..., N, 3] or [..., N, 4] 3D points to project, if the last
dimension is 4, the points are assumed to be in homogeneous coordinates
model (np.ndarray): [..., 4, 4] model matrix
view (np.ndarray): [..., 4, 4] view matrix
perspective (np.ndarray): [..., 4, 4] perspective matrix
Returns:
scr_coord (np.ndarray): [..., N, 3] screen space coordinates, value ranging in [0, 1].
The origin (0., 0., 0.) is corresponding to the left & bottom & nearest
linear_depth (np.ndarray): [..., N] linear depth
"""
assert perspective is not None, "perspective matrix is required"
if points.shape[-1] == 3:
points = np.concatenate([points, np.ones_like(points[..., :1])], axis=-1)
if model is not None:
points = points @ model.swapaxes(-1, -2)
if view is not None:
points = points @ view.swapaxes(-1, -2)
clip_coord = points @ perspective.swapaxes(-1, -2)
ndc_coord = clip_coord[..., :3] / clip_coord[..., 3:]
scr_coord = ndc_coord * 0.5 + 0.5
linear_depth = clip_coord[..., 3]
return scr_coord, linear_depth
@batched(2,2,2)
def project_cv(
points: np.ndarray,
extrinsics: np.ndarray = None,
intrinsics: np.ndarray = None
) -> Tuple[np.ndarray, np.ndarray]:
"""
Project 3D points to 2D following the OpenCV convention
Args:
points (np.ndarray): [..., N, 3] or [..., N, 4] 3D points to project, if the last
dimension is 4, the points are assumed to be in homogeneous coordinates
extrinsics (np.ndarray): [..., 4, 4] extrinsics matrix
intrinsics (np.ndarray): [..., 3, 3] intrinsics matrix
Returns:
uv_coord (np.ndarray): [..., N, 2] uv coordinates, value ranging in [0, 1].
The origin (0., 0.) is corresponding to the left & top
linear_depth (np.ndarray): [..., N] linear depth
"""
assert intrinsics is not None, "intrinsics matrix is required"
if points.shape[-1] == 3:
points = np.concatenate([points, np.ones_like(points[..., :1])], axis=-1)
if extrinsics is not None:
points = points @ extrinsics.swapaxes(-1, -2)
points = points[..., :3] @ intrinsics.swapaxes(-1, -2)
uv_coord = points[..., :2] / points[..., 2:]
linear_depth = points[..., 2]
return uv_coord, linear_depth
@batched(2,2,2,2)
def unproject_gl(
screen_coord: np.ndarray,
model: np.ndarray = None,
view: np.ndarray = None,
perspective: np.ndarray = None
) -> np.ndarray:
"""
Unproject screen space coordinates to 3D view space following the OpenGL convention (except for row major matrice)
Args:
screen_coord (np.ndarray): [..., N, 3] screen space coordinates, value ranging in [0, 1].
The origin (0., 0., 0.) is corresponding to the left & bottom & nearest
model (np.ndarray): [..., 4, 4] model matrix
view (np.ndarray): [..., 4, 4] view matrix
perspective (np.ndarray): [..., 4, 4] perspective matrix
Returns:
points (np.ndarray): [..., N, 3] 3d points
"""
assert perspective is not None, "perspective matrix is required"
ndc_xy = screen_coord * 2 - 1
clip_coord = np.concatenate([ndc_xy, np.ones_like(ndc_xy[..., :1])], axis=-1)
transform = perspective
if view is not None:
transform = transform @ view
if model is not None:
transform = transform @ model
transform = np.linalg.inv(transform)
points = clip_coord @ transform.swapaxes(-1, -2)
points = points[..., :3] / points[..., 3:]
return points
@batched(2,1,2,2)
def unproject_cv(
uv_coord: np.ndarray,
depth: np.ndarray,
extrinsics: np.ndarray = None,
intrinsics: np.ndarray = None
) -> np.ndarray:
"""
Unproject uv coordinates to 3D view space following the OpenCV convention
Args:
uv_coord (np.ndarray): [..., N, 2] uv coordinates, value ranging in [0, 1].
The origin (0., 0.) is corresponding to the left & top
depth (np.ndarray): [..., N] depth value
extrinsics (np.ndarray): [..., 4, 4] extrinsics matrix
intrinsics (np.ndarray): [..., 3, 3] intrinsics matrix
Returns:
points (np.ndarray): [..., N, 3] 3d points
"""
assert intrinsics is not None, "intrinsics matrix is required"
points = np.concatenate([uv_coord, np.ones_like(uv_coord[..., :1])], axis=-1)
points = points @ np.linalg.inv(intrinsics).swapaxes(-1, -2)
points = points * depth[..., None]
if extrinsics is not None:
points = np.concatenate([points, np.ones_like(points[..., :1])], axis=-1)
points = (points @ np.linalg.inv(extrinsics).swapaxes(-1, -2))[..., :3]
return points
def quaternion_to_matrix(quaternion: np.ndarray, eps: float = 1e-12) -> np.ndarray:
"""Converts a batch of quaternions (w, x, y, z) to rotation matrices
Args:
quaternion (np.ndarray): shape (..., 4), the quaternions to convert
Returns:
np.ndarray: shape (..., 3, 3), the rotation matrices corresponding to the given quaternions
"""
assert quaternion.shape[-1] == 4
quaternion = quaternion / np.linalg.norm(quaternion, axis=-1, keepdims=True).clip(min=eps)
w, x, y, z = quaternion[..., 0], quaternion[..., 1], quaternion[..., 2], quaternion[..., 3]
zeros = np.zeros_like(w)
I = np.eye(3, dtype=quaternion.dtype)
xyz = quaternion[..., 1:]
A = xyz[..., :, None] * xyz[..., None, :] - I * (xyz ** 2).sum(axis=-1)[..., None, None]
B = np.stack([
zeros, -z, y,
z, zeros, -x,
-y, x, zeros
], axis=-1).reshape(*quaternion.shape[:-1], 3, 3)
rot_mat = I + 2 * (A + w[..., None, None] * B)
return rot_mat
def matrix_to_quaternion(rot_mat: np.ndarray, eps: float = 1e-12) -> np.ndarray:
"""Convert 3x3 rotation matrix to quaternion (w, x, y, z)
Args:
rot_mat (np.ndarray): shape (..., 3, 3), the rotation matrices to convert
Returns:
np.ndarray: shape (..., 4), the quaternions corresponding to the given rotation matrices
"""
# Extract the diagonal and off-diagonal elements of the rotation matrix
m00, m01, m02, m10, m11, m12, m20, m21, m22 = [rot_mat[..., i, j] for i in range(3) for j in range(3)]
diag = np.diagonal(rot_mat, axis1=-2, axis2=-1)
M = np.array([
[1, 1, 1],
[1, -1, -1],
[-1, 1, -1],
[-1, -1, 1]
], dtype=rot_mat.dtype)
wxyz = 0.5 * np.clip(1 + diag @ M.T, 0.0, None) ** 0.5
max_idx = np.argmax(wxyz, axis=-1)
xw = np.sign(m21 - m12)
yw = np.sign(m02 - m20)
zw = np.sign(m10 - m01)
yz = np.sign(m21 + m12)
xz = np.sign(m02 + m20)
xy = np.sign(m01 + m10)
ones = np.ones_like(xw)
sign = np.where(
max_idx[..., None] == 0,
np.stack([ones, xw, yw, zw], axis=-1),
np.where(
max_idx[..., None] == 1,
np.stack([xw, ones, xy, xz], axis=-1),
np.where(
max_idx[..., None] == 2,
np.stack([yw, xy, ones, yz], axis=-1),
np.stack([zw, xz, yz, ones], axis=-1)
)
)
)
quat = sign * wxyz
quat = quat / np.linalg.norm(quat, axis=-1, keepdims=True).clip(min=eps)
return quat
def extrinsics_to_essential(extrinsics: np.ndarray):
"""
extrinsics matrix `[[R, t] [0, 0, 0, 1]]` such that `x' = R (x - t)` to essential matrix such that `x' E x = 0`
Args:
extrinsics (np.ndaray): [..., 4, 4] extrinsics matrix
Returns:
(np.ndaray): [..., 3, 3] essential matrix
"""
assert extrinsics.shape[-2:] == (4, 4)
R = extrinsics[..., :3, :3]
t = extrinsics[..., :3, 3]
zeros = np.zeros_like(t[..., 0])
t_x = np.stack([
zeros, -t[..., 2], t[..., 1],
t[..., 2], zeros, -t[..., 0],
-t[..., 1], t[..., 0], zeros
]).reshape(*t.shape[:-1], 3, 3)
return t_x @ R
def euler_axis_angle_rotation(axis: str, angle: np.ndarray) -> np.ndarray:
"""
Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.
Args:
axis: Axis label "X" or "Y or "Z".
angle: any shape tensor of Euler angles in radians
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
cos = np.cos(angle)
sin = np.sin(angle)
one = np.ones_like(angle)
zero = np.zeros_like(angle)
if axis == "X":
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
elif axis == "Y":
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
elif axis == "Z":
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
else:
raise ValueError("letter must be either X, Y or Z.")
return np.stack(R_flat, -1).reshape(angle.shape + (3, 3))
def euler_angles_to_matrix(euler_angles: np.ndarray, convention: str = 'XYZ') -> np.ndarray:
"""
Convert rotations given as Euler angles in radians to rotation matrices.
Args:
euler_angles: Euler angles in radians as ndarray of shape (..., 3), XYZ
convention: permutation of "X", "Y" or "Z", representing the order of Euler rotations to apply.
Returns:
Rotation matrices as ndarray of shape (..., 3, 3).
"""
if euler_angles.shape[-1] != 3:
raise ValueError("Invalid input euler angles.")
if len(convention) != 3:
raise ValueError("Convention must have 3 letters.")
if convention[1] in (convention[0], convention[2]):
raise ValueError(f"Invalid convention {convention}.")
for letter in convention:
if letter not in ("X", "Y", "Z"):
raise ValueError(f"Invalid letter {letter} in convention string.")
matrices = [
euler_axis_angle_rotation(c, euler_angles[..., 'XYZ'.index(c)])
for c in convention
]
return matrices[2] @ matrices[1] @ matrices[0]
def skew_symmetric(v: np.ndarray):
"Skew symmetric matrix from a 3D vector"
assert v.shape[-1] == 3, "v must be 3D"
x, y, z = v[..., 0], v[..., 1], v[..., 2]
zeros = np.zeros_like(x)
return np.stack([
zeros, -z, y,
z, zeros, -x,
-y, x, zeros,
], axis=-1).reshape(*v.shape[:-1], 3, 3)
def rotation_matrix_from_vectors(v1: np.ndarray, v2: np.ndarray):
"Rotation matrix that rotates v1 to v2"
I = np.eye(3, dtype=v1.dtype)
v1 = v1 / np.linalg.norm(v1, axis=-1)
v2 = v2 / np.linalg.norm(v2, axis=-1)
v = np.cross(v1, v2, axis=-1)
c = np.sum(v1 * v2, axis=-1)
K = skew_symmetric(v)
R = I + K + (1 / (1 + c)).astype(v1.dtype)[None, None] * (K @ K) # Avoid numpy's default type casting for scalars
return R
def axis_angle_to_matrix(axis_angle: np.ndarray, eps: float = 1e-12) -> np.ndarray:
"""Convert axis-angle representation (rotation vector) to rotation matrix, whose direction is the axis of rotation and length is the angle of rotation
Args:
axis_angle (np.ndarray): shape (..., 3), axis-angle vcetors
Returns:
np.ndarray: shape (..., 3, 3) The rotation matrices for the given axis-angle parameters
"""
batch_shape = axis_angle.shape[:-1]
dtype = axis_angle.dtype
angle = np.linalg.norm(axis_angle, axis=-1, keepdims=True)
axis = axis_angle / (angle + eps)
cos = np.cos(angle)[..., None, :]
sin = np.sin(angle)[..., None, :]
rx, ry, rz = np.split(axis, 3, axis=-1)
zeros = np.zeros((*batch_shape, 1), dtype=dtype)
K = np.concatenate([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], axis=-1).reshape((*batch_shape, 3, 3))
ident = np.eye(3, dtype=dtype)
rot_mat = ident + sin * K + (1 - cos) * (K @ K)
return rot_mat
def ray_intersection(p1: np.ndarray, d1: np.ndarray, p2: np.ndarray, d2: np.ndarray):
"""
Compute the intersection/closest point of two D-dimensional rays
If the rays are intersecting, the closest point is the intersection point.
Args:
p1 (np.ndarray): (..., D) origin of ray 1
d1 (np.ndarray): (..., D) direction of ray 1
p2 (np.ndarray): (..., D) origin of ray 2
d2 (np.ndarray): (..., D) direction of ray 2
Returns:
(np.ndarray): (..., N) intersection point
"""
p1, d1, p2, d2 = np.broadcast_arrays(p1, d1, p2, d2)
dtype = p1.dtype
dim = p1.shape[-1]
d = np.stack([d1, d2], axis=-2) # (..., 2, D)
p = np.stack([p1, p2], axis=-2) # (..., 2, D)
A = np.concatenate([
(np.eye(dim, dtype=dtype) * np.ones((*p.shape[:-2], 2, 1, 1))).reshape(*d.shape[:-2], 2 * dim, dim), # (..., 2 * D, D)
-(np.eye(2, dtype=dtype)[..., None] * d[..., None, :]).swapaxes(-2, -1).reshape(*d.shape[:-2], 2 * dim, 2) # (..., 2 * D, 2)
], axis=-1) # (..., 2 * D, D + 2)
b = p.reshape(*p.shape[:-2], 2 * dim) # (..., 2 * D)
x = np.linalg.solve(A.swapaxes(-1, -2) @ A + 1e-12 * np.eye(dim + 2, dtype=dtype), (A.swapaxes(-1, -2) @ b[..., :, None])[..., 0])
return x[..., :dim], (x[..., dim], x[..., dim + 1])
def se3_matrix(R: np.ndarray, t: np.ndarray) -> np.ndarray:
"""
Convert rotation matrix and translation vector to 4x4 transformation matrix.
Args:
R (np.ndarray): [..., 3, 3] rotation matrix
t (np.ndarray): [..., 3] translation vector
Returns:
np.ndarray: [..., 4, 4] transformation matrix
"""
assert R.shape[:-2] == t.shape[:-1]
assert R.shape[-1] == 3 and R.shape[-2] == 3
return np.concatenate([
np.concatenate([R, t[..., None]], axis=-1),
np.concatenate([np.zeros_like(t), np.ones_like(t[..., :1])], axis=-1)[..., None, :]
], axis=-2)
def slerp_quaternion(q1: np.ndarray, q2: np.ndarray, t: np.ndarray) -> np.ndarray:
"""
Spherical linear interpolation between two unit quaternions.
Args:
q1 (np.ndarray): [..., d] unit vector 1
q2 (np.ndarray): [..., d] unit vector 2
t (np.ndarray): [...] interpolation parameter in [0, 1]
Returns:
np.ndarray: [..., 3] interpolated unit vector
"""
q1 = q1 / np.linalg.norm(q1, axis=-1, keepdims=True)
q2 = q2 / np.linalg.norm(q2, axis=-1, keepdims=True)
dot = np.sum(q1 * q2, axis=-1, keepdims=True)
dot = np.where(dot < 0, -dot, dot) # handle negative dot product
dot = np.minimum(dot, 1.)
theta = np.arccos(dot) * t
q_ortho = q2 - q1 * dot
q_ortho = q_ortho / np.maximum(np.linalg.norm(q_ortho, axis=-1, keepdims=True), 1e-12)
q = q1 * np.cos(theta) + q_ortho * np.sin(theta)
return q
def slerp_rotation_matrix(R1: np.ndarray, R2: np.ndarray, t: np.ndarray) -> np.ndarray:
"""
Spherical linear interpolation between two rotation matrices.
Args:
R1 (np.ndarray): [..., 3, 3] rotation matrix 1
R2 (np.ndarray): [..., 3, 3] rotation matrix 2
t (np.ndarray): [...] interpolation parameter in [0, 1]
Returns:
np.ndarray: [..., 3, 3] interpolated rotation matrix
"""
quat1 = matrix_to_quaternion(R1)
quat2 = matrix_to_quaternion(R2)
quat = slerp_quaternion(quat1, quat2, t)
return quaternion_to_matrix(quat)
def slerp_vector(v1: np.ndarray, v2: np.ndarray, t: np.ndarray) -> np.ndarray:
"""
Spherical linear interpolation between two unit vectors. The vectors are assumed to be normalized.
Args:
v1 (np.ndarray): [..., d] unit vector 1
v2 (np.ndarray): [..., d] unit vector 2
t (np.ndarray): [...] interpolation parameter in [0, 1]
Returns:
np.ndarray: [..., d] interpolated unit vector
"""
dot = np.sum(v1 * v2, axis=-1, keepdims=True)
dot = np.minimum(dot, 1.)
theta = np.arccos(dot) * t
v_ortho = v2 - v1 * dot
v_ortho = v_ortho / np.maximum(np.linalg.norm(v_ortho, axis=-1, keepdims=True), 1e-12)
v = v1 * np.cos(theta) + v_ortho * np.sin(theta)
return v
def lerp(x1: np.ndarray, x2: np.ndarray, t: np.ndarray) -> np.ndarray:
"""
Linear interpolation between two vectors.
Args:
x1 (np.ndarray): [..., d] vector 1
x2 (np.ndarray): [..., d] vector 2
t (np.ndarray): [...] interpolation parameter. [0, 1] for interpolation between x1 and x2, otherwise for extrapolation.
Returns:
np.ndarray: [..., d] interpolated vector
"""
return x1 + np.asarray(t)[..., None] * (x2 - x1)
def lerp_se3_matrix(T1: np.ndarray, T2: np.ndarray, t: np.ndarray) -> np.ndarray:
"""
Linear interpolation between two SE(3) matrices.
Args:
T1 (np.ndarray): [..., 4, 4] SE(3) matrix 1
T2 (np.ndarray): [..., 4, 4] SE(3) matrix 2
t (np.ndarray): [...] interpolation parameter in [0, 1]
Returns:
np.ndarray: [..., 4, 4] interpolated SE(3) matrix
"""
R1 = T1[..., :3, :3]
R2 = T2[..., :3, :3]
trans1 = T1[..., :3, 3]
trans2 = T2[..., :3, 3]
R = slerp_rotation_matrix(R1, R2, t)
trans = lerp(trans1, trans2, t)
return se3_matrix(R, trans)
def piecewise_lerp(x: np.ndarray, t: np.ndarray, s: np.ndarray, extrapolation_mode: Literal['constant', 'linear'] = 'constant') -> np.ndarray:
"""
Linear spline interpolation.
### Parameters:
- `x`: np.ndarray, shape (n, d): the values of data points.
- `t`: np.ndarray, shape (n,): the times of the data points.
- `s`: np.ndarray, shape (m,): the times to be interpolated.
- `extrapolation_mode`: str, the mode of extrapolation. 'constant' means extrapolate the boundary values, 'linear' means extrapolate linearly.
### Returns:
- `y`: np.ndarray, shape (..., m, d): the interpolated values.
"""
i = np.searchsorted(t, s, side='left')
if extrapolation_mode == 'constant':
prev = np.clip(i - 1, 0, len(t) - 1)
suc = np.clip(i, 0, len(t) - 1)
elif extrapolation_mode == 'linear':
prev = np.clip(i - 1, 0, len(t) - 2)
suc = np.clip(i, 1, len(t) - 1)
else:
raise ValueError(f'Invalid extrapolation_mode: {extrapolation_mode}')
u = (s - t[prev]) / np.maximum(t[suc] - t[prev], 1e-12)
y = lerp(x[prev], x[suc], u)
return y
def piecewise_lerp_se3_matrix(T: np.ndarray, t: np.ndarray, s: np.ndarray, extrapolation_mode: Literal['constant', 'linear'] = 'constant') -> np.ndarray:
"""
Linear spline interpolation for SE(3) matrices.
### Parameters:
- `T`: np.ndarray, shape (n, 4, 4): the SE(3) matrices.
- `t`: np.ndarray, shape (n,): the times of the data points.
- `s`: np.ndarray, shape (m,): the times to be interpolated.
- `extrapolation_mode`: str, the mode of extrapolation. 'constant' means extrapolate the boundary values, 'linear' means extrapolate linearly.
### Returns:
- `T_interp`: np.ndarray, shape (..., m, 4, 4): the interpolated SE(3) matrices.
"""
i = np.searchsorted(t, s, side='left')
if extrapolation_mode == 'constant':
prev = np.clip(i - 1, 0, len(t) - 1)
suc = np.clip(i, 0, len(t) - 1)
elif extrapolation_mode == 'linear':
prev = np.clip(i - 1, 0, len(t) - 2)
suc = np.clip(i, 1, len(t) - 1)
else:
raise ValueError(f'Invalid extrapolation_mode: {extrapolation_mode}')
u = (s - t[prev]) / np.maximum(t[suc] - t[prev], 1e-12)
T = lerp_se3_matrix(T[prev], T[suc], u)
return T
def apply_transform(T: np.ndarray, x: np.ndarray) -> np.ndarray:
"""
Apply SE(3) transformation to a point or a set of points.
### Parameters:
- `T`: np.ndarray, shape (..., 4, 4): the SE(3) matrix.
- `x`: np.ndarray, shape (..., 3): the point or a set of points to be transformed.
### Returns:
- `x_transformed`: np.ndarray, shape (..., 3): the transformed point or a set of points.
"""
x = np.asarray(x)
assert x.shape[-1] == 3
T = np.asarray(T)
assert T.shape[-2:] == (4, 4)
x_transformed = (T[..., :3, :3] @ x[..., :, None]) + T[..., :3, 3][..., None]
return x_transformed[..., 0]