File size: 36,529 Bytes
ec0c8fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 |
import numpy as np
from typing import *
from numbers import Number
from ._helpers import batched
__all__ = [
'perspective',
'perspective_from_fov',
'perspective_from_fov_xy',
'intrinsics_from_focal_center',
'intrinsics_from_fov',
'view_look_at',
'extrinsics_look_at',
'perspective_to_intrinsics',
'perspective_to_near_far',
'intrinsics_to_perspective',
'extrinsics_to_view',
'view_to_extrinsics',
'normalize_intrinsics',
'crop_intrinsics',
'pixel_to_uv',
'pixel_to_ndc',
'uv_to_pixel',
'project_depth',
'depth_buffer_to_linear',
'unproject_cv',
'unproject_gl',
'project_cv',
'project_gl',
'quaternion_to_matrix',
'axis_angle_to_matrix',
'matrix_to_quaternion',
'extrinsics_to_essential',
'euler_axis_angle_rotation',
'euler_angles_to_matrix',
'skew_symmetric',
'rotation_matrix_from_vectors',
'ray_intersection',
'se3_matrix',
'slerp_quaternion',
'slerp_vector',
'lerp',
'lerp_se3_matrix',
'piecewise_lerp',
'piecewise_lerp_se3_matrix',
'apply_transform'
]
@batched(0,0,0,0)
def perspective(
fov_y: Union[float, np.ndarray],
aspect: Union[float, np.ndarray],
near: Union[float, np.ndarray],
far: Union[float, np.ndarray]
) -> np.ndarray:
"""
Get OpenGL perspective matrix
Args:
fov_y (float | np.ndarray): field of view in y axis
aspect (float | np.ndarray): aspect ratio
near (float | np.ndarray): near plane to clip
far (float | np.ndarray): far plane to clip
Returns:
(np.ndarray): [..., 4, 4] perspective matrix
"""
N = fov_y.shape[0]
ret = np.zeros((N, 4, 4), dtype=fov_y.dtype)
ret[:, 0, 0] = 1. / (np.tan(fov_y / 2) * aspect)
ret[:, 1, 1] = 1. / (np.tan(fov_y / 2))
ret[:, 2, 2] = (near + far) / (near - far)
ret[:, 2, 3] = 2. * near * far / (near - far)
ret[:, 3, 2] = -1.
return ret
def perspective_from_fov(
fov: Union[float, np.ndarray],
width: Union[int, np.ndarray],
height: Union[int, np.ndarray],
near: Union[float, np.ndarray],
far: Union[float, np.ndarray]
) -> np.ndarray:
"""
Get OpenGL perspective matrix from field of view in largest dimension
Args:
fov (float | np.ndarray): field of view in largest dimension
width (int | np.ndarray): image width
height (int | np.ndarray): image height
near (float | np.ndarray): near plane to clip
far (float | np.ndarray): far plane to clip
Returns:
(np.ndarray): [..., 4, 4] perspective matrix
"""
fov_y = 2 * np.arctan(np.tan(fov / 2) * height / np.maximum(width, height))
aspect = width / height
return perspective(fov_y, aspect, near, far)
def perspective_from_fov_xy(
fov_x: Union[float, np.ndarray],
fov_y: Union[float, np.ndarray],
near: Union[float, np.ndarray],
far: Union[float, np.ndarray]
) -> np.ndarray:
"""
Get OpenGL perspective matrix from field of view in x and y axis
Args:
fov_x (float | np.ndarray): field of view in x axis
fov_y (float | np.ndarray): field of view in y axis
near (float | np.ndarray): near plane to clip
far (float | np.ndarray): far plane to clip
Returns:
(np.ndarray): [..., 4, 4] perspective matrix
"""
aspect = np.tan(fov_x / 2) / np.tan(fov_y / 2)
return perspective(fov_y, aspect, near, far)
def intrinsics_from_focal_center(
fx: Union[float, np.ndarray],
fy: Union[float, np.ndarray],
cx: Union[float, np.ndarray],
cy: Union[float, np.ndarray],
dtype: Optional[np.dtype] = np.float32
) -> np.ndarray:
"""
Get OpenCV intrinsics matrix
Returns:
(np.ndarray): [..., 3, 3] OpenCV intrinsics matrix
"""
if any(isinstance(x, np.ndarray) for x in (fx, fy, cx, cy)):
dtype = np.result_type(fx, fy, cx, cy)
fx, fy, cx, cy = np.broadcast_arrays(fx, fy, cx, cy)
ret = np.zeros((*fx.shape, 3, 3), dtype=dtype)
ret[..., 0, 0] = fx
ret[..., 1, 1] = fy
ret[..., 0, 2] = cx
ret[..., 1, 2] = cy
ret[..., 2, 2] = 1.
return ret
def intrinsics_from_fov(
fov_max: Union[float, np.ndarray] = None,
fov_min: Union[float, np.ndarray] = None,
fov_x: Union[float, np.ndarray] = None,
fov_y: Union[float, np.ndarray] = None,
width: Union[int, np.ndarray] = None,
height: Union[int, np.ndarray] = None,
) -> np.ndarray:
"""
Get normalized OpenCV intrinsics matrix from given field of view.
You can provide either fov_max, fov_min, fov_x or fov_y
Args:
width (int | np.ndarray): image width
height (int | np.ndarray): image height
fov_max (float | np.ndarray): field of view in largest dimension
fov_min (float | np.ndarray): field of view in smallest dimension
fov_x (float | np.ndarray): field of view in x axis
fov_y (float | np.ndarray): field of view in y axis
Returns:
(np.ndarray): [..., 3, 3] OpenCV intrinsics matrix
"""
if fov_max is not None:
fx = np.maximum(width, height) / width / (2 * np.tan(fov_max / 2))
fy = np.maximum(width, height) / height / (2 * np.tan(fov_max / 2))
elif fov_min is not None:
fx = np.minimum(width, height) / width / (2 * np.tan(fov_min / 2))
fy = np.minimum(width, height) / height / (2 * np.tan(fov_min / 2))
elif fov_x is not None and fov_y is not None:
fx = 1 / (2 * np.tan(fov_x / 2))
fy = 1 / (2 * np.tan(fov_y / 2))
elif fov_x is not None:
fx = 1 / (2 * np.tan(fov_x / 2))
fy = fx * width / height
elif fov_y is not None:
fy = 1 / (2 * np.tan(fov_y / 2))
fx = fy * height / width
cx = 0.5
cy = 0.5
ret = intrinsics_from_focal_center(fx, fy, cx, cy)
return ret
@batched(1,1,1)
def view_look_at(
eye: np.ndarray,
look_at: np.ndarray,
up: np.ndarray
) -> np.ndarray:
"""
Get OpenGL view matrix looking at something
Args:
eye (np.ndarray): [..., 3] the eye position
look_at (np.ndarray): [..., 3] the position to look at
up (np.ndarray): [..., 3] head up direction (y axis in screen space). Not necessarily othogonal to view direction
Returns:
(np.ndarray): [..., 4, 4], view matrix
"""
z = eye - look_at
x = np.cross(up, z)
y = np.cross(z, x)
# x = np.cross(y, z)
x = x / np.linalg.norm(x, axis=-1, keepdims=True)
y = y / np.linalg.norm(y, axis=-1, keepdims=True)
z = z / np.linalg.norm(z, axis=-1, keepdims=True)
R = np.stack([x, y, z], axis=-2)
t = -np.matmul(R, eye[..., None])
return np.concatenate([
np.concatenate([R, t], axis=-1),
np.array([[[0., 0., 0., 1.]]]).repeat(eye.shape[0], axis=0)
], axis=-2)
@batched(1,1,1)
def extrinsics_look_at(
eye: np.ndarray,
look_at: np.ndarray,
up: np.ndarray
) -> np.ndarray:
"""
Get OpenCV extrinsics matrix looking at something
Args:
eye (np.ndarray): [..., 3] the eye position
look_at (np.ndarray): [..., 3] the position to look at
up (np.ndarray): [..., 3] head up direction (-y axis in screen space). Not necessarily othogonal to view direction
Returns:
(np.ndarray): [..., 4, 4], extrinsics matrix
"""
z = look_at - eye
x = np.cross(-up, z)
y = np.cross(z, x)
# x = np.cross(y, z)
x = x / np.linalg.norm(x, axis=-1, keepdims=True)
y = y / np.linalg.norm(y, axis=-1, keepdims=True)
z = z / np.linalg.norm(z, axis=-1, keepdims=True)
R = np.stack([x, y, z], axis=-2)
t = -np.matmul(R, eye[..., None])
return np.concatenate([
np.concatenate([R, t], axis=-1),
np.array([[[0., 0., 0., 1.]]], dtype=eye.dtype).repeat(eye.shape[0], axis=0)
], axis=-2)
def perspective_to_intrinsics(
perspective: np.ndarray
) -> np.ndarray:
"""
OpenGL perspective matrix to OpenCV intrinsics
Args:
perspective (np.ndarray): [..., 4, 4] OpenGL perspective matrix
Returns:
(np.ndarray): shape [..., 3, 3] OpenCV intrinsics
"""
ret = np.array([[0.5, 0., 0.5], [0., -0.5, 0.5], [0., 0., 1.]], dtype=perspective.dtype) \
@ perspective[..., [0, 1, 3], :3] \
@ np.diag(np.array([1, -1, -1], dtype=perspective.dtype))
return ret
def perspective_to_near_far(perspective: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Get near and far planes from OpenGL perspective matrix
Args:
"""
a, b = perspective[..., 2, 2], perspective[..., 2, 3]
near, far = b / (a - 1), b / (a + 1)
return near, far
@batched(2,0,0)
def intrinsics_to_perspective(
intrinsics: np.ndarray,
near: Union[float, np.ndarray],
far: Union[float, np.ndarray],
) -> np.ndarray:
"""
OpenCV intrinsics to OpenGL perspective matrix
NOTE: not work for tile-shifting intrinsics currently
Args:
intrinsics (np.ndarray): [..., 3, 3] OpenCV intrinsics matrix
near (float | np.ndarray): [...] near plane to clip
far (float | np.ndarray): [...] far plane to clip
Returns:
(np.ndarray): [..., 4, 4] OpenGL perspective matrix
"""
N = intrinsics.shape[0]
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 1, 1]
cx, cy = intrinsics[:, 0, 2], intrinsics[:, 1, 2]
ret = np.zeros((N, 4, 4), dtype=intrinsics.dtype)
ret[:, 0, 0] = 2 * fx
ret[:, 1, 1] = 2 * fy
ret[:, 0, 2] = -2 * cx + 1
ret[:, 1, 2] = 2 * cy - 1
ret[:, 2, 2] = (near + far) / (near - far)
ret[:, 2, 3] = 2. * near * far / (near - far)
ret[:, 3, 2] = -1.
return ret
@batched(2)
def extrinsics_to_view(
extrinsics: np.ndarray
) -> np.ndarray:
"""
OpenCV camera extrinsics to OpenGL view matrix
Args:
extrinsics (np.ndarray): [..., 4, 4] OpenCV camera extrinsics matrix
Returns:
(np.ndarray): [..., 4, 4] OpenGL view matrix
"""
return extrinsics * np.array([1, -1, -1, 1], dtype=extrinsics.dtype)[:, None]
@batched(2)
def view_to_extrinsics(
view: np.ndarray
) -> np.ndarray:
"""
OpenGL view matrix to OpenCV camera extrinsics
Args:
view (np.ndarray): [..., 4, 4] OpenGL view matrix
Returns:
(np.ndarray): [..., 4, 4] OpenCV camera extrinsics matrix
"""
return view * np.array([1, -1, -1, 1], dtype=view.dtype)[:, None]
@batched(2, 0, 0, None)
def normalize_intrinsics(
intrinsics: np.ndarray,
width: Union[int, np.ndarray],
height: Union[int, np.ndarray],
integer_pixel_centers: bool = True
) -> np.ndarray:
"""
Normalize intrinsics from pixel cooridnates to uv coordinates
Args:
intrinsics (np.ndarray): [..., 3, 3] camera intrinsics(s) to normalize
width (int | np.ndarray): [...] image width(s)
height (int | np.ndarray): [...] image height(s)
integer_pixel_centers (bool): whether the integer pixel coordinates are at the center of the pixel. If False, the integer coordinates are at the left-top corner of the pixel.
Returns:
(np.ndarray): [..., 3, 3] normalized camera intrinsics(s)
"""
zeros = np.zeros_like(width)
ones = np.ones_like(width)
if integer_pixel_centers:
transform = np.stack([
1 / width, zeros, 0.5 / width,
zeros, 1 / height, 0.5 / height,
zeros, zeros, ones
]).reshape(*zeros.shape, 3, 3)
else:
transform = np.stack([
1 / width, zeros, zeros,
zeros, 1 / height, zeros,
zeros, zeros, ones
]).reshape(*zeros.shape, 3, 3)
return transform @ intrinsics
@batched(2,0,0,0,0,0,0)
def crop_intrinsics(
intrinsics: np.ndarray,
width: Union[int, np.ndarray],
height: Union[int, np.ndarray],
left: Union[int, np.ndarray],
top: Union[int, np.ndarray],
crop_width: Union[int, np.ndarray],
crop_height: Union[int, np.ndarray]
) -> np.ndarray:
"""
Evaluate the new intrinsics(s) after crop the image: cropped_img = img[top:top+crop_height, left:left+crop_width]
Args:
intrinsics (np.ndarray): [..., 3, 3] camera intrinsics(s) to crop
width (int | np.ndarray): [...] image width(s)
height (int | np.ndarray): [...] image height(s)
left (int | np.ndarray): [...] left crop boundary
top (int | np.ndarray): [...] top crop boundary
crop_width (int | np.ndarray): [...] crop width
crop_height (int | np.ndarray): [...] crop height
Returns:
(np.ndarray): [..., 3, 3] cropped camera intrinsics(s)
"""
zeros = np.zeros_like(width)
ones = np.ones_like(width)
transform = np.stack([
width / crop_width, zeros, -left / crop_width,
zeros, height / crop_height, -top / crop_height,
zeros, zeros, ones
]).reshape(*zeros.shape, 3, 3)
return transform @ intrinsics
@batched(1,0,0)
def pixel_to_uv(
pixel: np.ndarray,
width: Union[int, np.ndarray],
height: Union[int, np.ndarray]
) -> np.ndarray:
"""
Args:
pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1)
width (int | np.ndarray): [...] image width(s)
height (int | np.ndarray): [...] image height(s)
Returns:
(np.ndarray): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1)
"""
if not np.issubdtype(pixel.dtype, np.floating):
pixel = pixel.astype(np.float32)
dtype = pixel.dtype
uv = (pixel + np.array(0.5, dtype=dtype)) / np.stack([width, height], axis=-1)
return uv
@batched(1,0,0)
def uv_to_pixel(
uv: np.ndarray,
width: Union[int, np.ndarray],
height: Union[int, np.ndarray]
) -> np.ndarray:
"""
Args:
pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1)
width (int | np.ndarray): [...] image width(s)
height (int | np.ndarray): [...] image height(s)
Returns:
(np.ndarray): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1)
"""
pixel = uv * np.stack([width, height], axis=-1) - 0.5
return pixel
@batched(1,0,0)
def pixel_to_ndc(
pixel: np.ndarray,
width: Union[int, np.ndarray],
height: Union[int, np.ndarray]
) -> np.ndarray:
"""
Args:
pixel (np.ndarray): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1)
width (int | np.ndarray): [...] image width(s)
height (int | np.ndarray): [...] image height(s)
Returns:
(np.ndarray): [..., 2] pixel coordinrates defined in ndc space, the range is (-1, 1)
"""
if not np.issubdtype(pixel.dtype, np.floating):
pixel = pixel.astype(np.float32)
dtype = pixel.dtype
ndc = (pixel + np.array(0.5, dtype=dtype)) / (np.stack([width, height], dim=-1) * np.array([2, -2], dtype=dtype)) \
+ np.array([-1, 1], dtype=dtype)
return ndc
@batched(0,0,0)
def project_depth(
depth: np.ndarray,
near: Union[float, np.ndarray],
far: Union[float, np.ndarray]
) -> np.ndarray:
"""
Project linear depth to depth value in screen space
Args:
depth (np.ndarray): [...] depth value
near (float | np.ndarray): [...] near plane to clip
far (float | np.ndarray): [...] far plane to clip
Returns:
(np.ndarray): [..., 1] depth value in screen space, value ranging in [0, 1]
"""
return (far - near * far / depth) / (far - near)
@batched(0,0,0)
def depth_buffer_to_linear(
depth_buffer: np.ndarray,
near: Union[float, np.ndarray],
far: Union[float, np.ndarray]
) -> np.ndarray:
"""
OpenGL depth buffer to linear depth
Args:
depth_buffer (np.ndarray): [...] depth value
near (float | np.ndarray): [...] near plane to clip
far (float | np.ndarray): [...] far plane to clip
Returns:
(np.ndarray): [..., 1] linear depth
"""
return near * far / (far - (far - near) * depth_buffer)
@batched(2,2,2,2)
def project_gl(
points: np.ndarray,
model: np.ndarray = None,
view: np.ndarray = None,
perspective: np.ndarray = None
) -> Tuple[np.ndarray, np.ndarray]:
"""
Project 3D points to 2D following the OpenGL convention (except for row major matrice)
Args:
points (np.ndarray): [..., N, 3] or [..., N, 4] 3D points to project, if the last
dimension is 4, the points are assumed to be in homogeneous coordinates
model (np.ndarray): [..., 4, 4] model matrix
view (np.ndarray): [..., 4, 4] view matrix
perspective (np.ndarray): [..., 4, 4] perspective matrix
Returns:
scr_coord (np.ndarray): [..., N, 3] screen space coordinates, value ranging in [0, 1].
The origin (0., 0., 0.) is corresponding to the left & bottom & nearest
linear_depth (np.ndarray): [..., N] linear depth
"""
assert perspective is not None, "perspective matrix is required"
if points.shape[-1] == 3:
points = np.concatenate([points, np.ones_like(points[..., :1])], axis=-1)
if model is not None:
points = points @ model.swapaxes(-1, -2)
if view is not None:
points = points @ view.swapaxes(-1, -2)
clip_coord = points @ perspective.swapaxes(-1, -2)
ndc_coord = clip_coord[..., :3] / clip_coord[..., 3:]
scr_coord = ndc_coord * 0.5 + 0.5
linear_depth = clip_coord[..., 3]
return scr_coord, linear_depth
@batched(2,2,2)
def project_cv(
points: np.ndarray,
extrinsics: np.ndarray = None,
intrinsics: np.ndarray = None
) -> Tuple[np.ndarray, np.ndarray]:
"""
Project 3D points to 2D following the OpenCV convention
Args:
points (np.ndarray): [..., N, 3] or [..., N, 4] 3D points to project, if the last
dimension is 4, the points are assumed to be in homogeneous coordinates
extrinsics (np.ndarray): [..., 4, 4] extrinsics matrix
intrinsics (np.ndarray): [..., 3, 3] intrinsics matrix
Returns:
uv_coord (np.ndarray): [..., N, 2] uv coordinates, value ranging in [0, 1].
The origin (0., 0.) is corresponding to the left & top
linear_depth (np.ndarray): [..., N] linear depth
"""
assert intrinsics is not None, "intrinsics matrix is required"
if points.shape[-1] == 3:
points = np.concatenate([points, np.ones_like(points[..., :1])], axis=-1)
if extrinsics is not None:
points = points @ extrinsics.swapaxes(-1, -2)
points = points[..., :3] @ intrinsics.swapaxes(-1, -2)
uv_coord = points[..., :2] / points[..., 2:]
linear_depth = points[..., 2]
return uv_coord, linear_depth
@batched(2,2,2,2)
def unproject_gl(
screen_coord: np.ndarray,
model: np.ndarray = None,
view: np.ndarray = None,
perspective: np.ndarray = None
) -> np.ndarray:
"""
Unproject screen space coordinates to 3D view space following the OpenGL convention (except for row major matrice)
Args:
screen_coord (np.ndarray): [..., N, 3] screen space coordinates, value ranging in [0, 1].
The origin (0., 0., 0.) is corresponding to the left & bottom & nearest
model (np.ndarray): [..., 4, 4] model matrix
view (np.ndarray): [..., 4, 4] view matrix
perspective (np.ndarray): [..., 4, 4] perspective matrix
Returns:
points (np.ndarray): [..., N, 3] 3d points
"""
assert perspective is not None, "perspective matrix is required"
ndc_xy = screen_coord * 2 - 1
clip_coord = np.concatenate([ndc_xy, np.ones_like(ndc_xy[..., :1])], axis=-1)
transform = perspective
if view is not None:
transform = transform @ view
if model is not None:
transform = transform @ model
transform = np.linalg.inv(transform)
points = clip_coord @ transform.swapaxes(-1, -2)
points = points[..., :3] / points[..., 3:]
return points
@batched(2,1,2,2)
def unproject_cv(
uv_coord: np.ndarray,
depth: np.ndarray,
extrinsics: np.ndarray = None,
intrinsics: np.ndarray = None
) -> np.ndarray:
"""
Unproject uv coordinates to 3D view space following the OpenCV convention
Args:
uv_coord (np.ndarray): [..., N, 2] uv coordinates, value ranging in [0, 1].
The origin (0., 0.) is corresponding to the left & top
depth (np.ndarray): [..., N] depth value
extrinsics (np.ndarray): [..., 4, 4] extrinsics matrix
intrinsics (np.ndarray): [..., 3, 3] intrinsics matrix
Returns:
points (np.ndarray): [..., N, 3] 3d points
"""
assert intrinsics is not None, "intrinsics matrix is required"
points = np.concatenate([uv_coord, np.ones_like(uv_coord[..., :1])], axis=-1)
points = points @ np.linalg.inv(intrinsics).swapaxes(-1, -2)
points = points * depth[..., None]
if extrinsics is not None:
points = np.concatenate([points, np.ones_like(points[..., :1])], axis=-1)
points = (points @ np.linalg.inv(extrinsics).swapaxes(-1, -2))[..., :3]
return points
def quaternion_to_matrix(quaternion: np.ndarray, eps: float = 1e-12) -> np.ndarray:
"""Converts a batch of quaternions (w, x, y, z) to rotation matrices
Args:
quaternion (np.ndarray): shape (..., 4), the quaternions to convert
Returns:
np.ndarray: shape (..., 3, 3), the rotation matrices corresponding to the given quaternions
"""
assert quaternion.shape[-1] == 4
quaternion = quaternion / np.linalg.norm(quaternion, axis=-1, keepdims=True).clip(min=eps)
w, x, y, z = quaternion[..., 0], quaternion[..., 1], quaternion[..., 2], quaternion[..., 3]
zeros = np.zeros_like(w)
I = np.eye(3, dtype=quaternion.dtype)
xyz = quaternion[..., 1:]
A = xyz[..., :, None] * xyz[..., None, :] - I * (xyz ** 2).sum(axis=-1)[..., None, None]
B = np.stack([
zeros, -z, y,
z, zeros, -x,
-y, x, zeros
], axis=-1).reshape(*quaternion.shape[:-1], 3, 3)
rot_mat = I + 2 * (A + w[..., None, None] * B)
return rot_mat
def matrix_to_quaternion(rot_mat: np.ndarray, eps: float = 1e-12) -> np.ndarray:
"""Convert 3x3 rotation matrix to quaternion (w, x, y, z)
Args:
rot_mat (np.ndarray): shape (..., 3, 3), the rotation matrices to convert
Returns:
np.ndarray: shape (..., 4), the quaternions corresponding to the given rotation matrices
"""
# Extract the diagonal and off-diagonal elements of the rotation matrix
m00, m01, m02, m10, m11, m12, m20, m21, m22 = [rot_mat[..., i, j] for i in range(3) for j in range(3)]
diag = np.diagonal(rot_mat, axis1=-2, axis2=-1)
M = np.array([
[1, 1, 1],
[1, -1, -1],
[-1, 1, -1],
[-1, -1, 1]
], dtype=rot_mat.dtype)
wxyz = 0.5 * np.clip(1 + diag @ M.T, 0.0, None) ** 0.5
max_idx = np.argmax(wxyz, axis=-1)
xw = np.sign(m21 - m12)
yw = np.sign(m02 - m20)
zw = np.sign(m10 - m01)
yz = np.sign(m21 + m12)
xz = np.sign(m02 + m20)
xy = np.sign(m01 + m10)
ones = np.ones_like(xw)
sign = np.where(
max_idx[..., None] == 0,
np.stack([ones, xw, yw, zw], axis=-1),
np.where(
max_idx[..., None] == 1,
np.stack([xw, ones, xy, xz], axis=-1),
np.where(
max_idx[..., None] == 2,
np.stack([yw, xy, ones, yz], axis=-1),
np.stack([zw, xz, yz, ones], axis=-1)
)
)
)
quat = sign * wxyz
quat = quat / np.linalg.norm(quat, axis=-1, keepdims=True).clip(min=eps)
return quat
def extrinsics_to_essential(extrinsics: np.ndarray):
"""
extrinsics matrix `[[R, t] [0, 0, 0, 1]]` such that `x' = R (x - t)` to essential matrix such that `x' E x = 0`
Args:
extrinsics (np.ndaray): [..., 4, 4] extrinsics matrix
Returns:
(np.ndaray): [..., 3, 3] essential matrix
"""
assert extrinsics.shape[-2:] == (4, 4)
R = extrinsics[..., :3, :3]
t = extrinsics[..., :3, 3]
zeros = np.zeros_like(t[..., 0])
t_x = np.stack([
zeros, -t[..., 2], t[..., 1],
t[..., 2], zeros, -t[..., 0],
-t[..., 1], t[..., 0], zeros
]).reshape(*t.shape[:-1], 3, 3)
return t_x @ R
def euler_axis_angle_rotation(axis: str, angle: np.ndarray) -> np.ndarray:
"""
Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.
Args:
axis: Axis label "X" or "Y or "Z".
angle: any shape tensor of Euler angles in radians
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
cos = np.cos(angle)
sin = np.sin(angle)
one = np.ones_like(angle)
zero = np.zeros_like(angle)
if axis == "X":
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
elif axis == "Y":
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
elif axis == "Z":
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
else:
raise ValueError("letter must be either X, Y or Z.")
return np.stack(R_flat, -1).reshape(angle.shape + (3, 3))
def euler_angles_to_matrix(euler_angles: np.ndarray, convention: str = 'XYZ') -> np.ndarray:
"""
Convert rotations given as Euler angles in radians to rotation matrices.
Args:
euler_angles: Euler angles in radians as ndarray of shape (..., 3), XYZ
convention: permutation of "X", "Y" or "Z", representing the order of Euler rotations to apply.
Returns:
Rotation matrices as ndarray of shape (..., 3, 3).
"""
if euler_angles.shape[-1] != 3:
raise ValueError("Invalid input euler angles.")
if len(convention) != 3:
raise ValueError("Convention must have 3 letters.")
if convention[1] in (convention[0], convention[2]):
raise ValueError(f"Invalid convention {convention}.")
for letter in convention:
if letter not in ("X", "Y", "Z"):
raise ValueError(f"Invalid letter {letter} in convention string.")
matrices = [
euler_axis_angle_rotation(c, euler_angles[..., 'XYZ'.index(c)])
for c in convention
]
return matrices[2] @ matrices[1] @ matrices[0]
def skew_symmetric(v: np.ndarray):
"Skew symmetric matrix from a 3D vector"
assert v.shape[-1] == 3, "v must be 3D"
x, y, z = v[..., 0], v[..., 1], v[..., 2]
zeros = np.zeros_like(x)
return np.stack([
zeros, -z, y,
z, zeros, -x,
-y, x, zeros,
], axis=-1).reshape(*v.shape[:-1], 3, 3)
def rotation_matrix_from_vectors(v1: np.ndarray, v2: np.ndarray):
"Rotation matrix that rotates v1 to v2"
I = np.eye(3, dtype=v1.dtype)
v1 = v1 / np.linalg.norm(v1, axis=-1)
v2 = v2 / np.linalg.norm(v2, axis=-1)
v = np.cross(v1, v2, axis=-1)
c = np.sum(v1 * v2, axis=-1)
K = skew_symmetric(v)
R = I + K + (1 / (1 + c)).astype(v1.dtype)[None, None] * (K @ K) # Avoid numpy's default type casting for scalars
return R
def axis_angle_to_matrix(axis_angle: np.ndarray, eps: float = 1e-12) -> np.ndarray:
"""Convert axis-angle representation (rotation vector) to rotation matrix, whose direction is the axis of rotation and length is the angle of rotation
Args:
axis_angle (np.ndarray): shape (..., 3), axis-angle vcetors
Returns:
np.ndarray: shape (..., 3, 3) The rotation matrices for the given axis-angle parameters
"""
batch_shape = axis_angle.shape[:-1]
dtype = axis_angle.dtype
angle = np.linalg.norm(axis_angle, axis=-1, keepdims=True)
axis = axis_angle / (angle + eps)
cos = np.cos(angle)[..., None, :]
sin = np.sin(angle)[..., None, :]
rx, ry, rz = np.split(axis, 3, axis=-1)
zeros = np.zeros((*batch_shape, 1), dtype=dtype)
K = np.concatenate([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], axis=-1).reshape((*batch_shape, 3, 3))
ident = np.eye(3, dtype=dtype)
rot_mat = ident + sin * K + (1 - cos) * (K @ K)
return rot_mat
def ray_intersection(p1: np.ndarray, d1: np.ndarray, p2: np.ndarray, d2: np.ndarray):
"""
Compute the intersection/closest point of two D-dimensional rays
If the rays are intersecting, the closest point is the intersection point.
Args:
p1 (np.ndarray): (..., D) origin of ray 1
d1 (np.ndarray): (..., D) direction of ray 1
p2 (np.ndarray): (..., D) origin of ray 2
d2 (np.ndarray): (..., D) direction of ray 2
Returns:
(np.ndarray): (..., N) intersection point
"""
p1, d1, p2, d2 = np.broadcast_arrays(p1, d1, p2, d2)
dtype = p1.dtype
dim = p1.shape[-1]
d = np.stack([d1, d2], axis=-2) # (..., 2, D)
p = np.stack([p1, p2], axis=-2) # (..., 2, D)
A = np.concatenate([
(np.eye(dim, dtype=dtype) * np.ones((*p.shape[:-2], 2, 1, 1))).reshape(*d.shape[:-2], 2 * dim, dim), # (..., 2 * D, D)
-(np.eye(2, dtype=dtype)[..., None] * d[..., None, :]).swapaxes(-2, -1).reshape(*d.shape[:-2], 2 * dim, 2) # (..., 2 * D, 2)
], axis=-1) # (..., 2 * D, D + 2)
b = p.reshape(*p.shape[:-2], 2 * dim) # (..., 2 * D)
x = np.linalg.solve(A.swapaxes(-1, -2) @ A + 1e-12 * np.eye(dim + 2, dtype=dtype), (A.swapaxes(-1, -2) @ b[..., :, None])[..., 0])
return x[..., :dim], (x[..., dim], x[..., dim + 1])
def se3_matrix(R: np.ndarray, t: np.ndarray) -> np.ndarray:
"""
Convert rotation matrix and translation vector to 4x4 transformation matrix.
Args:
R (np.ndarray): [..., 3, 3] rotation matrix
t (np.ndarray): [..., 3] translation vector
Returns:
np.ndarray: [..., 4, 4] transformation matrix
"""
assert R.shape[:-2] == t.shape[:-1]
assert R.shape[-1] == 3 and R.shape[-2] == 3
return np.concatenate([
np.concatenate([R, t[..., None]], axis=-1),
np.concatenate([np.zeros_like(t), np.ones_like(t[..., :1])], axis=-1)[..., None, :]
], axis=-2)
def slerp_quaternion(q1: np.ndarray, q2: np.ndarray, t: np.ndarray) -> np.ndarray:
"""
Spherical linear interpolation between two unit quaternions.
Args:
q1 (np.ndarray): [..., d] unit vector 1
q2 (np.ndarray): [..., d] unit vector 2
t (np.ndarray): [...] interpolation parameter in [0, 1]
Returns:
np.ndarray: [..., 3] interpolated unit vector
"""
q1 = q1 / np.linalg.norm(q1, axis=-1, keepdims=True)
q2 = q2 / np.linalg.norm(q2, axis=-1, keepdims=True)
dot = np.sum(q1 * q2, axis=-1, keepdims=True)
dot = np.where(dot < 0, -dot, dot) # handle negative dot product
dot = np.minimum(dot, 1.)
theta = np.arccos(dot) * t
q_ortho = q2 - q1 * dot
q_ortho = q_ortho / np.maximum(np.linalg.norm(q_ortho, axis=-1, keepdims=True), 1e-12)
q = q1 * np.cos(theta) + q_ortho * np.sin(theta)
return q
def slerp_rotation_matrix(R1: np.ndarray, R2: np.ndarray, t: np.ndarray) -> np.ndarray:
"""
Spherical linear interpolation between two rotation matrices.
Args:
R1 (np.ndarray): [..., 3, 3] rotation matrix 1
R2 (np.ndarray): [..., 3, 3] rotation matrix 2
t (np.ndarray): [...] interpolation parameter in [0, 1]
Returns:
np.ndarray: [..., 3, 3] interpolated rotation matrix
"""
quat1 = matrix_to_quaternion(R1)
quat2 = matrix_to_quaternion(R2)
quat = slerp_quaternion(quat1, quat2, t)
return quaternion_to_matrix(quat)
def slerp_vector(v1: np.ndarray, v2: np.ndarray, t: np.ndarray) -> np.ndarray:
"""
Spherical linear interpolation between two unit vectors. The vectors are assumed to be normalized.
Args:
v1 (np.ndarray): [..., d] unit vector 1
v2 (np.ndarray): [..., d] unit vector 2
t (np.ndarray): [...] interpolation parameter in [0, 1]
Returns:
np.ndarray: [..., d] interpolated unit vector
"""
dot = np.sum(v1 * v2, axis=-1, keepdims=True)
dot = np.minimum(dot, 1.)
theta = np.arccos(dot) * t
v_ortho = v2 - v1 * dot
v_ortho = v_ortho / np.maximum(np.linalg.norm(v_ortho, axis=-1, keepdims=True), 1e-12)
v = v1 * np.cos(theta) + v_ortho * np.sin(theta)
return v
def lerp(x1: np.ndarray, x2: np.ndarray, t: np.ndarray) -> np.ndarray:
"""
Linear interpolation between two vectors.
Args:
x1 (np.ndarray): [..., d] vector 1
x2 (np.ndarray): [..., d] vector 2
t (np.ndarray): [...] interpolation parameter. [0, 1] for interpolation between x1 and x2, otherwise for extrapolation.
Returns:
np.ndarray: [..., d] interpolated vector
"""
return x1 + np.asarray(t)[..., None] * (x2 - x1)
def lerp_se3_matrix(T1: np.ndarray, T2: np.ndarray, t: np.ndarray) -> np.ndarray:
"""
Linear interpolation between two SE(3) matrices.
Args:
T1 (np.ndarray): [..., 4, 4] SE(3) matrix 1
T2 (np.ndarray): [..., 4, 4] SE(3) matrix 2
t (np.ndarray): [...] interpolation parameter in [0, 1]
Returns:
np.ndarray: [..., 4, 4] interpolated SE(3) matrix
"""
R1 = T1[..., :3, :3]
R2 = T2[..., :3, :3]
trans1 = T1[..., :3, 3]
trans2 = T2[..., :3, 3]
R = slerp_rotation_matrix(R1, R2, t)
trans = lerp(trans1, trans2, t)
return se3_matrix(R, trans)
def piecewise_lerp(x: np.ndarray, t: np.ndarray, s: np.ndarray, extrapolation_mode: Literal['constant', 'linear'] = 'constant') -> np.ndarray:
"""
Linear spline interpolation.
### Parameters:
- `x`: np.ndarray, shape (n, d): the values of data points.
- `t`: np.ndarray, shape (n,): the times of the data points.
- `s`: np.ndarray, shape (m,): the times to be interpolated.
- `extrapolation_mode`: str, the mode of extrapolation. 'constant' means extrapolate the boundary values, 'linear' means extrapolate linearly.
### Returns:
- `y`: np.ndarray, shape (..., m, d): the interpolated values.
"""
i = np.searchsorted(t, s, side='left')
if extrapolation_mode == 'constant':
prev = np.clip(i - 1, 0, len(t) - 1)
suc = np.clip(i, 0, len(t) - 1)
elif extrapolation_mode == 'linear':
prev = np.clip(i - 1, 0, len(t) - 2)
suc = np.clip(i, 1, len(t) - 1)
else:
raise ValueError(f'Invalid extrapolation_mode: {extrapolation_mode}')
u = (s - t[prev]) / np.maximum(t[suc] - t[prev], 1e-12)
y = lerp(x[prev], x[suc], u)
return y
def piecewise_lerp_se3_matrix(T: np.ndarray, t: np.ndarray, s: np.ndarray, extrapolation_mode: Literal['constant', 'linear'] = 'constant') -> np.ndarray:
"""
Linear spline interpolation for SE(3) matrices.
### Parameters:
- `T`: np.ndarray, shape (n, 4, 4): the SE(3) matrices.
- `t`: np.ndarray, shape (n,): the times of the data points.
- `s`: np.ndarray, shape (m,): the times to be interpolated.
- `extrapolation_mode`: str, the mode of extrapolation. 'constant' means extrapolate the boundary values, 'linear' means extrapolate linearly.
### Returns:
- `T_interp`: np.ndarray, shape (..., m, 4, 4): the interpolated SE(3) matrices.
"""
i = np.searchsorted(t, s, side='left')
if extrapolation_mode == 'constant':
prev = np.clip(i - 1, 0, len(t) - 1)
suc = np.clip(i, 0, len(t) - 1)
elif extrapolation_mode == 'linear':
prev = np.clip(i - 1, 0, len(t) - 2)
suc = np.clip(i, 1, len(t) - 1)
else:
raise ValueError(f'Invalid extrapolation_mode: {extrapolation_mode}')
u = (s - t[prev]) / np.maximum(t[suc] - t[prev], 1e-12)
T = lerp_se3_matrix(T[prev], T[suc], u)
return T
def apply_transform(T: np.ndarray, x: np.ndarray) -> np.ndarray:
"""
Apply SE(3) transformation to a point or a set of points.
### Parameters:
- `T`: np.ndarray, shape (..., 4, 4): the SE(3) matrix.
- `x`: np.ndarray, shape (..., 3): the point or a set of points to be transformed.
### Returns:
- `x_transformed`: np.ndarray, shape (..., 3): the transformed point or a set of points.
"""
x = np.asarray(x)
assert x.shape[-1] == 3
T = np.asarray(T)
assert T.shape[-2:] == (4, 4)
x_transformed = (T[..., :3, :3] @ x[..., :, None]) + T[..., :3, 3][..., None]
return x_transformed[..., 0] |