|
from typing import * |
|
from functools import partial |
|
import math |
|
|
|
import numpy as np |
|
import utils3d |
|
|
|
from .tools import timeit |
|
|
|
def weighted_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray: |
|
if w is None: |
|
return np.mean(x, axis=axis) |
|
else: |
|
w = w.astype(x.dtype) |
|
return (x * w).mean(axis=axis) / np.clip(w.mean(axis=axis), eps, None) |
|
|
|
|
|
def harmonic_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray: |
|
if w is None: |
|
return 1 / (1 / np.clip(x, eps, None)).mean(axis=axis) |
|
else: |
|
w = w.astype(x.dtype) |
|
return 1 / (weighted_mean_numpy(1 / (x + eps), w, axis=axis, keepdims=keepdims, eps=eps) + eps) |
|
|
|
|
|
def image_plane_uv_numpy(width: int, height: int, aspect_ratio: float = None, dtype: np.dtype = np.float32) -> np.ndarray: |
|
"UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)" |
|
if aspect_ratio is None: |
|
aspect_ratio = width / height |
|
|
|
span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5 |
|
span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5 |
|
|
|
u = np.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype) |
|
v = np.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype) |
|
u, v = np.meshgrid(u, v, indexing='xy') |
|
uv = np.stack([u, v], axis=-1) |
|
return uv |
|
|
|
|
|
def focal_to_fov_numpy(focal: np.ndarray): |
|
return 2 * np.arctan(0.5 / focal) |
|
|
|
|
|
def fov_to_focal_numpy(fov: np.ndarray): |
|
return 0.5 / np.tan(fov / 2) |
|
|
|
|
|
def intrinsics_to_fov_numpy(intrinsics: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: |
|
fov_x = focal_to_fov_numpy(intrinsics[..., 0, 0]) |
|
fov_y = focal_to_fov_numpy(intrinsics[..., 1, 1]) |
|
return fov_x, fov_y |
|
|
|
|
|
def solve_optimal_shift_focal(uv: np.ndarray, xyz: np.ndarray, ransac_iters: int = None, ransac_hypothetical_size: float = 0.1, ransac_threshold: float = 0.1): |
|
"Solve `min |focal * xy / (z + shift) - uv|` with respect to shift and focal" |
|
from scipy.optimize import least_squares |
|
uv, xy, z = uv.reshape(-1, 2), xyz[..., :2].reshape(-1, 2), xyz[..., 2].reshape(-1) |
|
|
|
def fn(uv: np.ndarray, xy: np.ndarray, z: np.ndarray, shift: np.ndarray): |
|
xy_proj = xy / (z + shift)[: , None] |
|
f = (xy_proj * uv).sum() / np.square(xy_proj).sum() |
|
err = (f * xy_proj - uv).ravel() |
|
return err |
|
|
|
initial_shift = 0 |
|
|
|
if ransac_iters is None: |
|
solution = least_squares(partial(fn, uv, xy, z), x0=initial_shift, ftol=1e-3, method='lm') |
|
optim_shift = solution['x'].squeeze().astype(np.float32) |
|
else: |
|
best_err, best_shift = np.inf, None |
|
for _ in range(ransac_iters): |
|
maybe_inliers = np.random.choice(len(z), size=int(ransac_hypothetical_size * len(z)), replace=False) |
|
solution = least_squares(partial(fn, uv[maybe_inliers], xy[maybe_inliers], z[maybe_inliers]), x0=initial_shift, ftol=1e-3, method='lm') |
|
maybe_shift = solution['x'].squeeze().astype(np.float32) |
|
confirmed_inliers = np.linalg.norm(fn(uv, xy, z, maybe_shift).reshape(-1, 2), axis=-1) < ransac_threshold |
|
if confirmed_inliers.sum() > 10: |
|
solution = least_squares(partial(fn, uv[confirmed_inliers], xy[confirmed_inliers], z[confirmed_inliers]), x0=maybe_shift, ftol=1e-3, method='lm') |
|
better_shift = solution['x'].squeeze().astype(np.float32) |
|
else: |
|
better_shift = maybe_shift |
|
err = np.linalg.norm(fn(uv, xy, z, better_shift).reshape(-1, 2), axis=-1).clip(max=ransac_threshold).mean() |
|
if err < best_err: |
|
best_err, best_shift = err, better_shift |
|
initial_shift = best_shift |
|
|
|
optim_shift = best_shift |
|
|
|
xy_proj = xy / (z + optim_shift)[: , None] |
|
optim_focal = (xy_proj * uv).sum() / (xy_proj * xy_proj).sum() |
|
|
|
return optim_shift, optim_focal |
|
|
|
|
|
def point_map_to_depth_numpy(points: np.ndarray, mask: np.ndarray = None, downsample_size: Tuple[int, int] = (64, 64)): |
|
import cv2 |
|
assert points.shape[-1] == 3, "Points should (H, W, 3)" |
|
|
|
height, width = points.shape[-3], points.shape[-2] |
|
diagonal = (height ** 2 + width ** 2) ** 0.5 |
|
|
|
uv = image_plane_uv_numpy(width=width, height=height) |
|
|
|
if mask is None: |
|
points_lr = cv2.resize(points, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 3) |
|
uv_lr = cv2.resize(uv, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 2) |
|
else: |
|
index, mask_lr = mask_aware_nearest_resize_numpy(mask, *downsample_size) |
|
points_lr, uv_lr = points[index][mask_lr], uv[index][mask_lr] |
|
|
|
if points_lr.size == 0: |
|
return np.zeros((height, width)), 0, 0, 0 |
|
|
|
optim_shift, optim_focal = solve_optimal_shift_focal(uv_lr, points_lr, ransac_iters=None) |
|
|
|
fov_x = 2 * np.arctan(width / diagonal / optim_focal) |
|
fov_y = 2 * np.arctan(height / diagonal / optim_focal) |
|
|
|
depth = points[:, :, 2] + optim_shift |
|
return depth, fov_x, fov_y, optim_shift |
|
|
|
|
|
def mask_aware_nearest_resize_numpy(mask: np.ndarray, target_width: int, target_height: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: |
|
""" |
|
Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map. |
|
|
|
### Parameters |
|
- `mask`: Input 2D mask of shape (..., H, W) |
|
- `target_width`: target width of the resized map |
|
- `target_height`: target height of the resized map |
|
|
|
### Returns |
|
- `nearest_idx`: Nearest neighbor index of the resized map of shape (..., target_height, target_width). Indices are like j + i * W, where j is the row index and i is the column index. |
|
- `target_mask`: Mask of the resized map of shape (..., target_height, target_width) |
|
""" |
|
height, width = mask.shape[-2:] |
|
filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width) |
|
filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f) |
|
filter_size = filter_h_i * filter_w_i |
|
padding_h, padding_w = round(filter_h_f / 2), round(filter_w_f / 2) |
|
|
|
|
|
uv = utils3d.numpy.image_pixel_center(width=width, height=height, dtype=np.float32) |
|
indices = np.arange(height * width, dtype=np.int32).reshape(height, width) |
|
padded_uv = np.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=np.float32) |
|
padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv |
|
padded_mask = np.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=bool) |
|
padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask |
|
padded_indices = np.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=np.int32) |
|
padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices |
|
windowed_uv = utils3d.numpy.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, axis=(0, 1)) |
|
windowed_mask = utils3d.numpy.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, axis=(-2, -1)) |
|
windowed_indices = utils3d.numpy.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, axis=(0, 1)) |
|
|
|
|
|
target_uv = utils3d.numpy.image_uv(width=target_width, height=target_height, dtype=np.float32) * np.array([width, height], dtype=np.float32) |
|
target_corner = target_uv - np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32) |
|
target_corner = np.round(target_corner - 0.5).astype(np.int32) + np.array((padding_w, padding_h), dtype=np.int32) |
|
|
|
target_window_uv = windowed_uv[target_corner[..., 1], target_corner[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) |
|
target_window_mask = windowed_mask[..., target_corner[..., 1], target_corner[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) |
|
target_window_indices = windowed_indices[target_corner[..., 1], target_corner[..., 0], :, :].reshape(target_height, target_width, filter_size) |
|
|
|
|
|
dist = np.square(target_window_uv - target_uv[..., None]) |
|
dist = dist[..., 0, :] + dist[..., 1, :] |
|
dist = np.where(target_window_mask, dist, np.inf) |
|
nearest_in_window = np.argmin(dist, axis=-1, keepdims=True) |
|
nearest_idx = np.take_along_axis(target_window_indices, nearest_in_window, axis=-1).squeeze(-1) |
|
nearest_i, nearest_j = nearest_idx // width, nearest_idx % width |
|
target_mask = np.any(target_window_mask, axis=-1) |
|
batch_indices = [np.arange(n).reshape([1] * i + [n] + [1] * (mask.ndim - i - 1)) for i, n in enumerate(mask.shape[:-2])] |
|
|
|
return (*batch_indices, nearest_i, nearest_j), target_mask |