File size: 9,407 Bytes
ec0c8fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from typing import *
from functools import partial
import math

import numpy as np
import utils3d

from .tools import timeit

def weighted_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray:
    if w is None:
        return np.mean(x, axis=axis)
    else:
        w = w.astype(x.dtype)
        return (x * w).mean(axis=axis) / np.clip(w.mean(axis=axis), eps, None)


def harmonic_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray:
    if w is None:
        return 1 / (1 / np.clip(x, eps, None)).mean(axis=axis)
    else:
        w = w.astype(x.dtype)
        return 1 / (weighted_mean_numpy(1 / (x + eps), w, axis=axis, keepdims=keepdims, eps=eps) + eps)


def image_plane_uv_numpy(width: int, height: int, aspect_ratio: float = None, dtype: np.dtype = np.float32) -> np.ndarray:
    "UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)"
    if aspect_ratio is None:
        aspect_ratio = width / height
    
    span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5
    span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5

    u = np.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype)
    v = np.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype)
    u, v = np.meshgrid(u, v, indexing='xy')
    uv = np.stack([u, v], axis=-1)
    return uv


def focal_to_fov_numpy(focal: np.ndarray):
    return 2 * np.arctan(0.5 / focal)


def fov_to_focal_numpy(fov: np.ndarray):
    return 0.5 / np.tan(fov / 2)


def intrinsics_to_fov_numpy(intrinsics: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
    fov_x = focal_to_fov_numpy(intrinsics[..., 0, 0])
    fov_y = focal_to_fov_numpy(intrinsics[..., 1, 1])
    return fov_x, fov_y


def solve_optimal_shift_focal(uv: np.ndarray, xyz: np.ndarray, ransac_iters: int = None, ransac_hypothetical_size: float = 0.1, ransac_threshold: float = 0.1):
    "Solve `min |focal * xy / (z + shift) - uv|` with respect to shift and focal"
    from scipy.optimize import least_squares
    uv, xy, z = uv.reshape(-1, 2), xyz[..., :2].reshape(-1, 2), xyz[..., 2].reshape(-1)

    def fn(uv: np.ndarray, xy: np.ndarray, z: np.ndarray, shift: np.ndarray):
        xy_proj = xy / (z + shift)[: , None]
        f = (xy_proj * uv).sum() / np.square(xy_proj).sum()
        err = (f * xy_proj - uv).ravel()
        return err

    initial_shift = 0 #-z.min(keepdims=True) + 1.0

    if ransac_iters is None:
        solution = least_squares(partial(fn, uv, xy, z), x0=initial_shift, ftol=1e-3, method='lm')
        optim_shift = solution['x'].squeeze().astype(np.float32)
    else:
        best_err, best_shift = np.inf, None
        for _ in range(ransac_iters):
            maybe_inliers = np.random.choice(len(z), size=int(ransac_hypothetical_size * len(z)), replace=False)
            solution = least_squares(partial(fn, uv[maybe_inliers], xy[maybe_inliers], z[maybe_inliers]), x0=initial_shift, ftol=1e-3, method='lm')
            maybe_shift = solution['x'].squeeze().astype(np.float32)
            confirmed_inliers = np.linalg.norm(fn(uv, xy, z, maybe_shift).reshape(-1, 2), axis=-1) < ransac_threshold
            if confirmed_inliers.sum() > 10:
                solution = least_squares(partial(fn, uv[confirmed_inliers], xy[confirmed_inliers], z[confirmed_inliers]), x0=maybe_shift, ftol=1e-3, method='lm')
                better_shift = solution['x'].squeeze().astype(np.float32)
            else:
                better_shift = maybe_shift
            err = np.linalg.norm(fn(uv, xy, z, better_shift).reshape(-1, 2), axis=-1).clip(max=ransac_threshold).mean()
            if err < best_err:
                best_err, best_shift = err, better_shift
                initial_shift = best_shift
            
        optim_shift = best_shift

    xy_proj = xy / (z + optim_shift)[: , None]
    optim_focal = (xy_proj * uv).sum() / (xy_proj * xy_proj).sum()

    return optim_shift, optim_focal


def point_map_to_depth_numpy(points: np.ndarray, mask: np.ndarray = None, downsample_size: Tuple[int, int] = (64, 64)):
    import cv2
    assert points.shape[-1] == 3, "Points should (H, W, 3)"

    height, width = points.shape[-3], points.shape[-2]
    diagonal = (height ** 2 + width ** 2) ** 0.5

    uv = image_plane_uv_numpy(width=width, height=height)
    
    if mask is None:
        points_lr = cv2.resize(points, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 3)
        uv_lr = cv2.resize(uv, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 2)
    else:
        index, mask_lr = mask_aware_nearest_resize_numpy(mask, *downsample_size)
        points_lr, uv_lr = points[index][mask_lr], uv[index][mask_lr]
    
    if points_lr.size == 0:
        return np.zeros((height, width)), 0, 0, 0
    
    optim_shift, optim_focal = solve_optimal_shift_focal(uv_lr, points_lr, ransac_iters=None)

    fov_x = 2 * np.arctan(width / diagonal / optim_focal)
    fov_y = 2 * np.arctan(height / diagonal / optim_focal)
    
    depth = points[:, :, 2] + optim_shift
    return depth, fov_x, fov_y, optim_shift


def mask_aware_nearest_resize_numpy(mask: np.ndarray, target_width: int, target_height: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """
    Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.

    ### Parameters
    - `mask`: Input 2D mask of shape (..., H, W)
    - `target_width`: target width of the resized map
    - `target_height`: target height of the resized map

    ### Returns
    - `nearest_idx`: Nearest neighbor index of the resized map of shape (..., target_height, target_width). Indices are like j + i * W, where j is the row index and i is the column index.
    - `target_mask`: Mask of the resized map of shape (..., target_height, target_width)
    """
    height, width = mask.shape[-2:]
    filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
    filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f)
    filter_size = filter_h_i * filter_w_i
    padding_h, padding_w = round(filter_h_f / 2), round(filter_w_f / 2)
    
    # Window the original mask and uv
    uv = utils3d.numpy.image_pixel_center(width=width, height=height, dtype=np.float32)
    indices = np.arange(height * width, dtype=np.int32).reshape(height, width)
    padded_uv = np.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=np.float32)
    padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
    padded_mask = np.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=bool)
    padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
    padded_indices = np.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=np.int32)
    padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
    windowed_uv = utils3d.numpy.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, axis=(0, 1))
    windowed_mask = utils3d.numpy.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, axis=(-2, -1))
    windowed_indices = utils3d.numpy.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, axis=(0, 1))

    # Gather the target pixels's local window
    target_uv = utils3d.numpy.image_uv(width=target_width, height=target_height, dtype=np.float32) * np.array([width, height], dtype=np.float32)
    target_corner = target_uv - np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32)
    target_corner = np.round(target_corner - 0.5).astype(np.int32) + np.array((padding_w, padding_h), dtype=np.int32)

    target_window_uv = windowed_uv[target_corner[..., 1], target_corner[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size)                          # (target_height, tgt_width, 2, filter_size)
    target_window_mask = windowed_mask[..., target_corner[..., 1], target_corner[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size)     # (..., target_height, tgt_width, filter_size)
    target_window_indices = windowed_indices[target_corner[..., 1], target_corner[..., 0], :, :].reshape(target_height, target_width, filter_size)                      # (target_height, tgt_width, filter_size)

    # Compute nearest neighbor in the local window for each pixel 
    dist = np.square(target_window_uv - target_uv[..., None])
    dist = dist[..., 0, :] + dist[..., 1, :]
    dist = np.where(target_window_mask, dist, np.inf)                                                   # (..., target_height, tgt_width, filter_size)
    nearest_in_window = np.argmin(dist, axis=-1, keepdims=True)                                         # (..., target_height, tgt_width, 1)
    nearest_idx = np.take_along_axis(target_window_indices, nearest_in_window, axis=-1).squeeze(-1)     # (..., target_height, tgt_width)
    nearest_i, nearest_j = nearest_idx // width, nearest_idx % width
    target_mask = np.any(target_window_mask, axis=-1)
    batch_indices = [np.arange(n).reshape([1] * i + [n] + [1] * (mask.ndim - i - 1)) for i, n in enumerate(mask.shape[:-2])]

    return (*batch_indices, nearest_i, nearest_j), target_mask