Spaces:
Runtime error
Runtime error
# Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/data/datasets/cityscapes.py # noqa | |
# and https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/evalInstanceLevelSemanticLabeling.py # noqa | |
import glob | |
import os | |
import os.path as osp | |
import tempfile | |
from collections import OrderedDict | |
import mmcv | |
import numpy as np | |
import pycocotools.mask as maskUtils | |
from mmcv.utils import print_log | |
from .builder import DATASETS | |
from .coco import CocoDataset | |
class CityscapesDataset(CocoDataset): | |
CLASSES = ('person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', | |
'bicycle') | |
def _filter_imgs(self, min_size=32): | |
"""Filter images too small or without ground truths.""" | |
valid_inds = [] | |
# obtain images that contain annotation | |
ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values()) | |
# obtain images that contain annotations of the required categories | |
ids_in_cat = set() | |
for i, class_id in enumerate(self.cat_ids): | |
ids_in_cat |= set(self.coco.cat_img_map[class_id]) | |
# merge the image id sets of the two conditions and use the merged set | |
# to filter out images if self.filter_empty_gt=True | |
ids_in_cat &= ids_with_ann | |
valid_img_ids = [] | |
for i, img_info in enumerate(self.data_infos): | |
img_id = img_info['id'] | |
ann_ids = self.coco.getAnnIds(imgIds=[img_id]) | |
ann_info = self.coco.loadAnns(ann_ids) | |
all_iscrowd = all([_['iscrowd'] for _ in ann_info]) | |
if self.filter_empty_gt and (self.img_ids[i] not in ids_in_cat | |
or all_iscrowd): | |
continue | |
if min(img_info['width'], img_info['height']) >= min_size: | |
valid_inds.append(i) | |
valid_img_ids.append(img_id) | |
self.img_ids = valid_img_ids | |
return valid_inds | |
def _parse_ann_info(self, img_info, ann_info): | |
"""Parse bbox and mask annotation. | |
Args: | |
img_info (dict): Image info of an image. | |
ann_info (list[dict]): Annotation info of an image. | |
Returns: | |
dict: A dict containing the following keys: bboxes, \ | |
bboxes_ignore, labels, masks, seg_map. \ | |
"masks" are already decoded into binary masks. | |
""" | |
gt_bboxes = [] | |
gt_labels = [] | |
gt_bboxes_ignore = [] | |
gt_masks_ann = [] | |
for i, ann in enumerate(ann_info): | |
if ann.get('ignore', False): | |
continue | |
x1, y1, w, h = ann['bbox'] | |
if ann['area'] <= 0 or w < 1 or h < 1: | |
continue | |
if ann['category_id'] not in self.cat_ids: | |
continue | |
bbox = [x1, y1, x1 + w, y1 + h] | |
if ann.get('iscrowd', False): | |
gt_bboxes_ignore.append(bbox) | |
else: | |
gt_bboxes.append(bbox) | |
gt_labels.append(self.cat2label[ann['category_id']]) | |
gt_masks_ann.append(ann['segmentation']) | |
if gt_bboxes: | |
gt_bboxes = np.array(gt_bboxes, dtype=np.float32) | |
gt_labels = np.array(gt_labels, dtype=np.int64) | |
else: | |
gt_bboxes = np.zeros((0, 4), dtype=np.float32) | |
gt_labels = np.array([], dtype=np.int64) | |
if gt_bboxes_ignore: | |
gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32) | |
else: | |
gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) | |
ann = dict( | |
bboxes=gt_bboxes, | |
labels=gt_labels, | |
bboxes_ignore=gt_bboxes_ignore, | |
masks=gt_masks_ann, | |
seg_map=img_info['segm_file']) | |
return ann | |
def results2txt(self, results, outfile_prefix): | |
"""Dump the detection results to a txt file. | |
Args: | |
results (list[list | tuple]): Testing results of the | |
dataset. | |
outfile_prefix (str): The filename prefix of the json files. | |
If the prefix is "somepath/xxx", | |
the txt files will be named "somepath/xxx.txt". | |
Returns: | |
list[str]: Result txt files which contains corresponding \ | |
instance segmentation images. | |
""" | |
try: | |
import cityscapesscripts.helpers.labels as CSLabels | |
except ImportError: | |
raise ImportError('Please run "pip install citscapesscripts" to ' | |
'install cityscapesscripts first.') | |
result_files = [] | |
os.makedirs(outfile_prefix, exist_ok=True) | |
prog_bar = mmcv.ProgressBar(len(self)) | |
for idx in range(len(self)): | |
result = results[idx] | |
filename = self.data_infos[idx]['filename'] | |
basename = osp.splitext(osp.basename(filename))[0] | |
pred_txt = osp.join(outfile_prefix, basename + '_pred.txt') | |
bbox_result, segm_result = result | |
bboxes = np.vstack(bbox_result) | |
# segm results | |
if isinstance(segm_result, tuple): | |
# Some detectors use different scores for bbox and mask, | |
# like Mask Scoring R-CNN. Score of segm will be used instead | |
# of bbox score. | |
segms = mmcv.concat_list(segm_result[0]) | |
mask_score = segm_result[1] | |
else: | |
# use bbox score for mask score | |
segms = mmcv.concat_list(segm_result) | |
mask_score = [bbox[-1] for bbox in bboxes] | |
labels = [ | |
np.full(bbox.shape[0], i, dtype=np.int32) | |
for i, bbox in enumerate(bbox_result) | |
] | |
labels = np.concatenate(labels) | |
assert len(bboxes) == len(segms) == len(labels) | |
num_instances = len(bboxes) | |
prog_bar.update() | |
with open(pred_txt, 'w') as fout: | |
for i in range(num_instances): | |
pred_class = labels[i] | |
classes = self.CLASSES[pred_class] | |
class_id = CSLabels.name2label[classes].id | |
score = mask_score[i] | |
mask = maskUtils.decode(segms[i]).astype(np.uint8) | |
png_filename = osp.join(outfile_prefix, | |
basename + f'_{i}_{classes}.png') | |
mmcv.imwrite(mask, png_filename) | |
fout.write(f'{osp.basename(png_filename)} {class_id} ' | |
f'{score}\n') | |
result_files.append(pred_txt) | |
return result_files | |
def format_results(self, results, txtfile_prefix=None): | |
"""Format the results to txt (standard format for Cityscapes | |
evaluation). | |
Args: | |
results (list): Testing results of the dataset. | |
txtfile_prefix (str | None): The prefix of txt files. It includes | |
the file path and the prefix of filename, e.g., "a/b/prefix". | |
If not specified, a temp file will be created. Default: None. | |
Returns: | |
tuple: (result_files, tmp_dir), result_files is a dict containing \ | |
the json filepaths, tmp_dir is the temporal directory created \ | |
for saving txt/png files when txtfile_prefix is not specified. | |
""" | |
assert isinstance(results, list), 'results must be a list' | |
assert len(results) == len(self), ( | |
'The length of results is not equal to the dataset len: {} != {}'. | |
format(len(results), len(self))) | |
assert isinstance(results, list), 'results must be a list' | |
assert len(results) == len(self), ( | |
'The length of results is not equal to the dataset len: {} != {}'. | |
format(len(results), len(self))) | |
if txtfile_prefix is None: | |
tmp_dir = tempfile.TemporaryDirectory() | |
txtfile_prefix = osp.join(tmp_dir.name, 'results') | |
else: | |
tmp_dir = None | |
result_files = self.results2txt(results, txtfile_prefix) | |
return result_files, tmp_dir | |
def evaluate(self, | |
results, | |
metric='bbox', | |
logger=None, | |
outfile_prefix=None, | |
classwise=False, | |
proposal_nums=(100, 300, 1000), | |
iou_thrs=np.arange(0.5, 0.96, 0.05)): | |
"""Evaluation in Cityscapes/COCO protocol. | |
Args: | |
results (list[list | tuple]): Testing results of the dataset. | |
metric (str | list[str]): Metrics to be evaluated. Options are | |
'bbox', 'segm', 'proposal', 'proposal_fast'. | |
logger (logging.Logger | str | None): Logger used for printing | |
related information during evaluation. Default: None. | |
outfile_prefix (str | None): The prefix of output file. It includes | |
the file path and the prefix of filename, e.g., "a/b/prefix". | |
If results are evaluated with COCO protocol, it would be the | |
prefix of output json file. For example, the metric is 'bbox' | |
and 'segm', then json files would be "a/b/prefix.bbox.json" and | |
"a/b/prefix.segm.json". | |
If results are evaluated with cityscapes protocol, it would be | |
the prefix of output txt/png files. The output files would be | |
png images under folder "a/b/prefix/xxx/" and the file name of | |
images would be written into a txt file | |
"a/b/prefix/xxx_pred.txt", where "xxx" is the video name of | |
cityscapes. If not specified, a temp file will be created. | |
Default: None. | |
classwise (bool): Whether to evaluating the AP for each class. | |
proposal_nums (Sequence[int]): Proposal number used for evaluating | |
recalls, such as recall@100, recall@1000. | |
Default: (100, 300, 1000). | |
iou_thrs (Sequence[float]): IoU threshold used for evaluating | |
recalls. If set to a list, the average recall of all IoUs will | |
also be computed. Default: 0.5. | |
Returns: | |
dict[str, float]: COCO style evaluation metric or cityscapes mAP \ | |
and AP@50. | |
""" | |
eval_results = dict() | |
metrics = metric.copy() if isinstance(metric, list) else [metric] | |
if 'cityscapes' in metrics: | |
eval_results.update( | |
self._evaluate_cityscapes(results, outfile_prefix, logger)) | |
metrics.remove('cityscapes') | |
# left metrics are all coco metric | |
if len(metrics) > 0: | |
# create CocoDataset with CityscapesDataset annotation | |
self_coco = CocoDataset(self.ann_file, self.pipeline.transforms, | |
None, self.data_root, self.img_prefix, | |
self.seg_prefix, self.proposal_file, | |
self.test_mode, self.filter_empty_gt) | |
# TODO: remove this in the future | |
# reload annotations of correct class | |
self_coco.CLASSES = self.CLASSES | |
self_coco.data_infos = self_coco.load_annotations(self.ann_file) | |
eval_results.update( | |
self_coco.evaluate(results, metrics, logger, outfile_prefix, | |
classwise, proposal_nums, iou_thrs)) | |
return eval_results | |
def _evaluate_cityscapes(self, results, txtfile_prefix, logger): | |
"""Evaluation in Cityscapes protocol. | |
Args: | |
results (list): Testing results of the dataset. | |
txtfile_prefix (str | None): The prefix of output txt file | |
logger (logging.Logger | str | None): Logger used for printing | |
related information during evaluation. Default: None. | |
Returns: | |
dict[str: float]: Cityscapes evaluation results, contains 'mAP' \ | |
and 'AP@50'. | |
""" | |
try: | |
import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as CSEval # noqa | |
except ImportError: | |
raise ImportError('Please run "pip install citscapesscripts" to ' | |
'install cityscapesscripts first.') | |
msg = 'Evaluating in Cityscapes style' | |
if logger is None: | |
msg = '\n' + msg | |
print_log(msg, logger=logger) | |
result_files, tmp_dir = self.format_results(results, txtfile_prefix) | |
if tmp_dir is None: | |
result_dir = osp.join(txtfile_prefix, 'results') | |
else: | |
result_dir = osp.join(tmp_dir.name, 'results') | |
eval_results = OrderedDict() | |
print_log(f'Evaluating results under {result_dir} ...', logger=logger) | |
# set global states in cityscapes evaluation API | |
CSEval.args.cityscapesPath = os.path.join(self.img_prefix, '../..') | |
CSEval.args.predictionPath = os.path.abspath(result_dir) | |
CSEval.args.predictionWalk = None | |
CSEval.args.JSONOutput = False | |
CSEval.args.colorized = False | |
CSEval.args.gtInstancesFile = os.path.join(result_dir, | |
'gtInstances.json') | |
CSEval.args.groundTruthSearch = os.path.join( | |
self.img_prefix.replace('leftImg8bit', 'gtFine'), | |
'*/*_gtFine_instanceIds.png') | |
groundTruthImgList = glob.glob(CSEval.args.groundTruthSearch) | |
assert len(groundTruthImgList), 'Cannot find ground truth images' \ | |
f' in {CSEval.args.groundTruthSearch}.' | |
predictionImgList = [] | |
for gt in groundTruthImgList: | |
predictionImgList.append(CSEval.getPrediction(gt, CSEval.args)) | |
CSEval_results = CSEval.evaluateImgLists(predictionImgList, | |
groundTruthImgList, | |
CSEval.args)['averages'] | |
eval_results['mAP'] = CSEval_results['allAp'] | |
eval_results['AP@50'] = CSEval_results['allAp50%'] | |
if tmp_dir is not None: | |
tmp_dir.cleanup() | |
return eval_results | |