File size: 14,288 Bytes
b334e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/data/datasets/cityscapes.py # noqa
# and https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/evalInstanceLevelSemanticLabeling.py # noqa

import glob
import os
import os.path as osp
import tempfile
from collections import OrderedDict

import mmcv
import numpy as np
import pycocotools.mask as maskUtils
from mmcv.utils import print_log

from .builder import DATASETS
from .coco import CocoDataset


@DATASETS.register_module()
class CityscapesDataset(CocoDataset):

    CLASSES = ('person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle',
               'bicycle')

    def _filter_imgs(self, min_size=32):
        """Filter images too small or without ground truths."""
        valid_inds = []
        # obtain images that contain annotation
        ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values())
        # obtain images that contain annotations of the required categories
        ids_in_cat = set()
        for i, class_id in enumerate(self.cat_ids):
            ids_in_cat |= set(self.coco.cat_img_map[class_id])
        # merge the image id sets of the two conditions and use the merged set
        # to filter out images if self.filter_empty_gt=True
        ids_in_cat &= ids_with_ann

        valid_img_ids = []
        for i, img_info in enumerate(self.data_infos):
            img_id = img_info['id']
            ann_ids = self.coco.getAnnIds(imgIds=[img_id])
            ann_info = self.coco.loadAnns(ann_ids)
            all_iscrowd = all([_['iscrowd'] for _ in ann_info])
            if self.filter_empty_gt and (self.img_ids[i] not in ids_in_cat
                                         or all_iscrowd):
                continue
            if min(img_info['width'], img_info['height']) >= min_size:
                valid_inds.append(i)
                valid_img_ids.append(img_id)
        self.img_ids = valid_img_ids
        return valid_inds

    def _parse_ann_info(self, img_info, ann_info):
        """Parse bbox and mask annotation.

        Args:
            img_info (dict): Image info of an image.
            ann_info (list[dict]): Annotation info of an image.

        Returns:
            dict: A dict containing the following keys: bboxes, \
                bboxes_ignore, labels, masks, seg_map. \
                "masks" are already decoded into binary masks.
        """
        gt_bboxes = []
        gt_labels = []
        gt_bboxes_ignore = []
        gt_masks_ann = []

        for i, ann in enumerate(ann_info):
            if ann.get('ignore', False):
                continue
            x1, y1, w, h = ann['bbox']
            if ann['area'] <= 0 or w < 1 or h < 1:
                continue
            if ann['category_id'] not in self.cat_ids:
                continue
            bbox = [x1, y1, x1 + w, y1 + h]
            if ann.get('iscrowd', False):
                gt_bboxes_ignore.append(bbox)
            else:
                gt_bboxes.append(bbox)
                gt_labels.append(self.cat2label[ann['category_id']])
                gt_masks_ann.append(ann['segmentation'])

        if gt_bboxes:
            gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
            gt_labels = np.array(gt_labels, dtype=np.int64)
        else:
            gt_bboxes = np.zeros((0, 4), dtype=np.float32)
            gt_labels = np.array([], dtype=np.int64)

        if gt_bboxes_ignore:
            gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
        else:
            gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)

        ann = dict(
            bboxes=gt_bboxes,
            labels=gt_labels,
            bboxes_ignore=gt_bboxes_ignore,
            masks=gt_masks_ann,
            seg_map=img_info['segm_file'])

        return ann

    def results2txt(self, results, outfile_prefix):
        """Dump the detection results to a txt file.

        Args:
            results (list[list | tuple]): Testing results of the
                dataset.
            outfile_prefix (str): The filename prefix of the json files.
                If the prefix is "somepath/xxx",
                the txt files will be named "somepath/xxx.txt".

        Returns:
            list[str]: Result txt files which contains corresponding \
                instance segmentation images.
        """
        try:
            import cityscapesscripts.helpers.labels as CSLabels
        except ImportError:
            raise ImportError('Please run "pip install citscapesscripts" to '
                              'install cityscapesscripts first.')
        result_files = []
        os.makedirs(outfile_prefix, exist_ok=True)
        prog_bar = mmcv.ProgressBar(len(self))
        for idx in range(len(self)):
            result = results[idx]
            filename = self.data_infos[idx]['filename']
            basename = osp.splitext(osp.basename(filename))[0]
            pred_txt = osp.join(outfile_prefix, basename + '_pred.txt')

            bbox_result, segm_result = result
            bboxes = np.vstack(bbox_result)
            # segm results
            if isinstance(segm_result, tuple):
                # Some detectors use different scores for bbox and mask,
                # like Mask Scoring R-CNN. Score of segm will be used instead
                # of bbox score.
                segms = mmcv.concat_list(segm_result[0])
                mask_score = segm_result[1]
            else:
                # use bbox score for mask score
                segms = mmcv.concat_list(segm_result)
                mask_score = [bbox[-1] for bbox in bboxes]
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(bbox_result)
            ]
            labels = np.concatenate(labels)

            assert len(bboxes) == len(segms) == len(labels)
            num_instances = len(bboxes)
            prog_bar.update()
            with open(pred_txt, 'w') as fout:
                for i in range(num_instances):
                    pred_class = labels[i]
                    classes = self.CLASSES[pred_class]
                    class_id = CSLabels.name2label[classes].id
                    score = mask_score[i]
                    mask = maskUtils.decode(segms[i]).astype(np.uint8)
                    png_filename = osp.join(outfile_prefix,
                                            basename + f'_{i}_{classes}.png')
                    mmcv.imwrite(mask, png_filename)
                    fout.write(f'{osp.basename(png_filename)} {class_id} '
                               f'{score}\n')
            result_files.append(pred_txt)

        return result_files

    def format_results(self, results, txtfile_prefix=None):
        """Format the results to txt (standard format for Cityscapes
        evaluation).

        Args:
            results (list): Testing results of the dataset.
            txtfile_prefix (str | None): The prefix of txt files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
            tuple: (result_files, tmp_dir), result_files is a dict containing \
                the json filepaths, tmp_dir is the temporal directory created \
                for saving txt/png files when txtfile_prefix is not specified.
        """
        assert isinstance(results, list), 'results must be a list'
        assert len(results) == len(self), (
            'The length of results is not equal to the dataset len: {} != {}'.
            format(len(results), len(self)))

        assert isinstance(results, list), 'results must be a list'
        assert len(results) == len(self), (
            'The length of results is not equal to the dataset len: {} != {}'.
            format(len(results), len(self)))

        if txtfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            txtfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None
        result_files = self.results2txt(results, txtfile_prefix)

        return result_files, tmp_dir

    def evaluate(self,
                 results,
                 metric='bbox',
                 logger=None,
                 outfile_prefix=None,
                 classwise=False,
                 proposal_nums=(100, 300, 1000),
                 iou_thrs=np.arange(0.5, 0.96, 0.05)):
        """Evaluation in Cityscapes/COCO protocol.

        Args:
            results (list[list | tuple]): Testing results of the dataset.
            metric (str | list[str]): Metrics to be evaluated. Options are
                'bbox', 'segm', 'proposal', 'proposal_fast'.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            outfile_prefix (str | None): The prefix of output file. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If results are evaluated with COCO protocol, it would be the
                prefix of output json file. For example, the metric is 'bbox'
                and 'segm', then json files would be "a/b/prefix.bbox.json" and
                "a/b/prefix.segm.json".
                If results are evaluated with cityscapes protocol, it would be
                the prefix of output txt/png files. The output files would be
                png images under folder "a/b/prefix/xxx/" and the file name of
                images would be written into a txt file
                "a/b/prefix/xxx_pred.txt", where "xxx" is the video name of
                cityscapes. If not specified, a temp file will be created.
                Default: None.
            classwise (bool): Whether to evaluating the AP for each class.
            proposal_nums (Sequence[int]): Proposal number used for evaluating
                recalls, such as recall@100, recall@1000.
                Default: (100, 300, 1000).
            iou_thrs (Sequence[float]): IoU threshold used for evaluating
                recalls. If set to a list, the average recall of all IoUs will
                also be computed. Default: 0.5.

        Returns:
            dict[str, float]: COCO style evaluation metric or cityscapes mAP \
                and AP@50.
        """
        eval_results = dict()

        metrics = metric.copy() if isinstance(metric, list) else [metric]

        if 'cityscapes' in metrics:
            eval_results.update(
                self._evaluate_cityscapes(results, outfile_prefix, logger))
            metrics.remove('cityscapes')

        # left metrics are all coco metric
        if len(metrics) > 0:
            # create CocoDataset with CityscapesDataset annotation
            self_coco = CocoDataset(self.ann_file, self.pipeline.transforms,
                                    None, self.data_root, self.img_prefix,
                                    self.seg_prefix, self.proposal_file,
                                    self.test_mode, self.filter_empty_gt)
            # TODO: remove this in the future
            # reload annotations of correct class
            self_coco.CLASSES = self.CLASSES
            self_coco.data_infos = self_coco.load_annotations(self.ann_file)
            eval_results.update(
                self_coco.evaluate(results, metrics, logger, outfile_prefix,
                                   classwise, proposal_nums, iou_thrs))

        return eval_results

    def _evaluate_cityscapes(self, results, txtfile_prefix, logger):
        """Evaluation in Cityscapes protocol.

        Args:
            results (list): Testing results of the dataset.
            txtfile_prefix (str | None): The prefix of output txt file
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.

        Returns:
            dict[str: float]: Cityscapes evaluation results, contains 'mAP' \
                and 'AP@50'.
        """

        try:
            import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as CSEval  # noqa
        except ImportError:
            raise ImportError('Please run "pip install citscapesscripts" to '
                              'install cityscapesscripts first.')
        msg = 'Evaluating in Cityscapes style'
        if logger is None:
            msg = '\n' + msg
        print_log(msg, logger=logger)

        result_files, tmp_dir = self.format_results(results, txtfile_prefix)

        if tmp_dir is None:
            result_dir = osp.join(txtfile_prefix, 'results')
        else:
            result_dir = osp.join(tmp_dir.name, 'results')

        eval_results = OrderedDict()
        print_log(f'Evaluating results under {result_dir} ...', logger=logger)

        # set global states in cityscapes evaluation API
        CSEval.args.cityscapesPath = os.path.join(self.img_prefix, '../..')
        CSEval.args.predictionPath = os.path.abspath(result_dir)
        CSEval.args.predictionWalk = None
        CSEval.args.JSONOutput = False
        CSEval.args.colorized = False
        CSEval.args.gtInstancesFile = os.path.join(result_dir,
                                                   'gtInstances.json')
        CSEval.args.groundTruthSearch = os.path.join(
            self.img_prefix.replace('leftImg8bit', 'gtFine'),
            '*/*_gtFine_instanceIds.png')

        groundTruthImgList = glob.glob(CSEval.args.groundTruthSearch)
        assert len(groundTruthImgList), 'Cannot find ground truth images' \
            f' in {CSEval.args.groundTruthSearch}.'
        predictionImgList = []
        for gt in groundTruthImgList:
            predictionImgList.append(CSEval.getPrediction(gt, CSEval.args))
        CSEval_results = CSEval.evaluateImgLists(predictionImgList,
                                                 groundTruthImgList,
                                                 CSEval.args)['averages']

        eval_results['mAP'] = CSEval_results['allAp']
        eval_results['AP@50'] = CSEval_results['allAp50%']
        if tmp_dir is not None:
            tmp_dir.cleanup()
        return eval_results