Spaces:
Running
Running
import gradio as gr | |
import os | |
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..') | |
import json | |
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
import commons | |
import utils | |
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
from text import text_to_sequence | |
from scipy.io.wavfile import write | |
def get_text(text, hps): | |
text_norm = text_to_sequence(text, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
def load_model(model_path, hps): | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(model_path, net_g, None) | |
return net_g | |
hps = utils.get_hparams_from_file("configs/vctk_base.json") | |
# Define a dictionary to store the model paths | |
model_paths = { | |
"Model 1": "fr_wa_finetuned_pho/G_125000.pth", | |
"Model 2": "fr_wa_finetuned/G_198000.pth", | |
"Model 3": "path_to_model_3_checkpoint.pth", | |
"Model 4": "path_to_model_4_checkpoint.pth" | |
} | |
# Load the initial model | |
net_g = load_model(model_paths["Model 1"], hps) | |
def tts(text, speaker_id, model_choice): | |
global net_g | |
net_g = load_model(model_paths[model_choice], hps) | |
if len(text) > 2000: | |
return "Error: Text is too long", None | |
sid = torch.LongTensor([speaker_id]) # speaker identity | |
stn_tst = get_text(text, hps) | |
with torch.no_grad(): | |
x_tst = stn_tst.unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) | |
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][ | |
0, 0].data.float().numpy() | |
return "Success", (hps.data.sampling_rate, audio) | |
app = gr.Blocks() | |
with app: | |
with gr.Tabs(): | |
for tab_name in ["Phonemes_finetuned", "Graphemes_finetuned", "Phonemes", "Graphemes"]: | |
with gr.TabItem(tab_name): | |
tts_input1 = gr.TextArea(label="Text in Walloon in phonemes IPA (2000 words limitation)", value="") | |
tts_input2 = gr.Dropdown(label="Speaker", choices=["Male", "Female"], type="index", value="Male") | |
model_choice = gr.Dropdown(label="Model", choices=list(model_paths.keys()), value="Model 1") | |
tts_submit = gr.Button("Generate", variant="primary") | |
tts_output1 = gr.Textbox(label="Message") | |
tts_output2 = gr.Audio(label="Output") | |
tts_submit.click(tts, [tts_input1, tts_input2, model_choice], [tts_output1, tts_output2]) | |
app.launch() | |