import gradio as gr import os os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..') import json import math import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import commons import utils from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate from models import SynthesizerTrn from text.symbols import symbols from text import text_to_sequence from scipy.io.wavfile import write def get_text(text, hps): text_norm = text_to_sequence(text, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) return text_norm def load_model(model_path, hps): net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model) _ = net_g.eval() _ = utils.load_checkpoint(model_path, net_g, None) return net_g hps = utils.get_hparams_from_file("configs/vctk_base.json") # Define a dictionary to store the model paths model_paths = { "Model 1": "fr_wa_finetuned_pho/G_125000.pth", "Model 2": "fr_wa_finetuned/G_198000.pth", "Model 3": "path_to_model_3_checkpoint.pth", "Model 4": "path_to_model_4_checkpoint.pth" } # Load the initial model net_g = load_model(model_paths["Model 1"], hps) def tts(text, speaker_id, model_choice): global net_g net_g = load_model(model_paths[model_choice], hps) if len(text) > 2000: return "Error: Text is too long", None sid = torch.LongTensor([speaker_id]) # speaker identity stn_tst = get_text(text, hps) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][ 0, 0].data.float().numpy() return "Success", (hps.data.sampling_rate, audio) app = gr.Blocks() with app: with gr.Tabs(): for tab_name in ["Phonemes_finetuned", "Graphemes_finetuned", "Phonemes", "Graphemes"]: with gr.TabItem(tab_name): tts_input1 = gr.TextArea(label="Text in Walloon in phonemes IPA (2000 words limitation)", value="") tts_input2 = gr.Dropdown(label="Speaker", choices=["Male", "Female"], type="index", value="Male") model_choice = gr.Dropdown(label="Model", choices=list(model_paths.keys()), value="Model 1") tts_submit = gr.Button("Generate", variant="primary") tts_output1 = gr.Textbox(label="Message") tts_output2 = gr.Audio(label="Output") tts_submit.click(tts, [tts_input1, tts_input2, model_choice], [tts_output1, tts_output2]) app.launch()