Spaces:
Sleeping
Sleeping
import gradio as gr | |
from janus.models import MultiModalityCausalLM, VLChatProcessor | |
from janus.utils.io import load_pil_images | |
import numpy as np | |
from PIL import Image | |
from transformers import AutoConfig, AutoModelForCausalLM | |
import torch | |
## | |
# Code from deepseek-ai/Janus | |
# Space from huggingface/twodgirl. | |
def generate(input_ids, | |
width, | |
height, | |
temperature: float = 1, | |
parallel_size: int = 1, | |
cfg_weight: float = 5, | |
image_token_num_per_image: int = 576, | |
patch_size: int = 16): | |
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device) | |
for i in range(parallel_size * 2): | |
tokens[i, :] = input_ids | |
if i % 2 != 0: | |
tokens[i, 1:-1] = processor.pad_id | |
inputs_embeds = model.language_model.get_input_embeddings()(tokens) | |
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device) | |
pkv = None | |
for i in range(image_token_num_per_image): | |
outputs = model.language_model.model(inputs_embeds=inputs_embeds, | |
use_cache=True, | |
past_key_values=pkv) | |
pkv = outputs.past_key_values | |
hidden_states = outputs.last_hidden_state | |
logits = model.gen_head(hidden_states[:, -1, :]) | |
logit_cond = logits[0::2, :] | |
logit_uncond = logits[1::2, :] | |
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond) | |
probs = torch.softmax(logits / temperature, dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) | |
generated_tokens[:, i] = next_token.squeeze(dim=-1) | |
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) | |
img_embeds = model.prepare_gen_img_embeds(next_token) | |
inputs_embeds = img_embeds.unsqueeze(dim=1) | |
patches = model.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), | |
shape=[parallel_size, 8, width // patch_size, height // patch_size]) | |
return generated_tokens.to(dtype=torch.int), patches | |
def unpack(dec, width, height, parallel_size=1): | |
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) | |
dec = np.clip((dec + 1) / 2 * 255, 0, 255) | |
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8) | |
visual_img[:, :, :] = dec | |
return visual_img | |
def generate_image(prompt, | |
width, | |
height, | |
# num_steps, | |
guidance, | |
seed): | |
if seed > -1: | |
generator = torch.Generator('cpu').manual_seed(seed) | |
else: | |
generator = None | |
messages = [{'role': 'User', 'content': prompt}, | |
{'role': 'Assistant', 'content': ''}] | |
text = processor.apply_sft_template_for_multi_turn_prompts(conversations=messages, | |
sft_format=processor.sft_format, | |
system_prompt='') | |
text = text + processor.image_start_tag | |
input_ids = torch.LongTensor(processor.tokenizer.encode(text)) | |
output, patches = generate(input_ids, | |
width // 16 * 16, | |
height // 16 * 16, | |
cfg_weight=guidance) | |
images = unpack(patches, | |
width // 16 * 16, | |
height // 16 * 16) | |
return Image.fromarray(images[0]), seed, '' | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label='Prompt', value='portrait, color, cinematic') | |
width = gr.Slider(64, 1536, 384, step=16, label='Width') | |
height = gr.Slider(64, 1536, 384, step=16, label='Height') | |
guidance = gr.Slider(1.0, 10.0, 5, step=0.1, label='Guidance') | |
seed = gr.Number(-1, precision=0, label='Seed (-1 for random)') | |
generate_btn = gr.Button('Generate') | |
with gr.Column(): | |
output_image = gr.Image(label='Generated Image') | |
seed_output = gr.Textbox(label='Used Seed') | |
intermediate_output = gr.Gallery(label='Output', elem_id='gallery', visible=False) | |
prompt.submit( | |
fn=generate_image, | |
inputs=[prompt, width, height, guidance, seed], | |
outputs=[output_image, seed_output, intermediate_output], | |
) | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[prompt, width, height, guidance, seed], | |
outputs=[output_image, seed_output, intermediate_output], | |
) | |
if __name__ == '__main__': | |
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model_path = 'deepseek-ai/Janus-1.3B' | |
processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) | |
tokenizer = processor.tokenizer | |
# model: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) | |
config = AutoConfig.from_pretrained(model_path) | |
language_config = config.language_config | |
language_config._attn_implementation = 'eager' | |
model = AutoModelForCausalLM.from_pretrained(model_path, | |
language_config=language_config, | |
trust_remote_code=True) | |
if torch.cuda.is_available(): | |
model = model.to(torch.bfloat16).cuda() | |
else: | |
model = model.to(torch.float16) | |
demo.launch() | |