Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -74,7 +74,7 @@ def generate_image(prompt,
|
|
74 |
sft_format=processor.sft_format,
|
75 |
system_prompt='')
|
76 |
text = text + processor.image_start_tag
|
77 |
-
input_ids = torch.LongTensor(processor.tokenizer.encode(
|
78 |
output, patches = generate(input_ids,
|
79 |
width // 16 * 16,
|
80 |
height // 16 * 16,
|
@@ -89,8 +89,8 @@ with gr.Blocks() as demo:
|
|
89 |
with gr.Row():
|
90 |
with gr.Column():
|
91 |
prompt = gr.Textbox(label='Prompt', value='portrait, color, cinematic')
|
92 |
-
width = gr.Slider(
|
93 |
-
height = gr.Slider(
|
94 |
guidance = gr.Slider(1.0, 10.0, 5, step=0.1, label='Guidance')
|
95 |
seed = gr.Number(-1, precision=0, label='Seed (-1 for random)')
|
96 |
|
@@ -119,8 +119,11 @@ if __name__ == '__main__':
|
|
119 |
tokenizer = processor.tokenizer
|
120 |
# model: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
121 |
config = AutoConfig.from_pretrained(model_path)
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
124 |
if torch.cuda.is_available():
|
125 |
model = model.to(torch.bfloat16).cuda()
|
126 |
else:
|
|
|
74 |
sft_format=processor.sft_format,
|
75 |
system_prompt='')
|
76 |
text = text + processor.image_start_tag
|
77 |
+
input_ids = torch.LongTensor(processor.tokenizer.encode(text))
|
78 |
output, patches = generate(input_ids,
|
79 |
width // 16 * 16,
|
80 |
height // 16 * 16,
|
|
|
89 |
with gr.Row():
|
90 |
with gr.Column():
|
91 |
prompt = gr.Textbox(label='Prompt', value='portrait, color, cinematic')
|
92 |
+
width = gr.Slider(64, 1536, 384, step=16, label='Width')
|
93 |
+
height = gr.Slider(64, 1536, 384, step=16, label='Height')
|
94 |
guidance = gr.Slider(1.0, 10.0, 5, step=0.1, label='Guidance')
|
95 |
seed = gr.Number(-1, precision=0, label='Seed (-1 for random)')
|
96 |
|
|
|
119 |
tokenizer = processor.tokenizer
|
120 |
# model: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
121 |
config = AutoConfig.from_pretrained(model_path)
|
122 |
+
language_config = config.language_config
|
123 |
+
language_config._attn_implementation = 'eager'
|
124 |
+
model = AutoModelForCausalLM.from_pretrained(model_path,
|
125 |
+
language_config=language_config,
|
126 |
+
trust_remote_code=True)
|
127 |
if torch.cuda.is_available():
|
128 |
model = model.to(torch.bfloat16).cuda()
|
129 |
else:
|