Session20 / src /stable_diffusion.py
Navyabhat's picture
Upload 10 files
dcfb6cf verified
raw
history blame contribute delete
No virus
8.84 kB
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer
from PIL import Image
from tqdm import tqdm
class StableDiffusion:
def __init__(
self,
vae_arch="CompVis/stable-diffusion-v1-4",
tokenizer_arch="openai/clip-vit-large-patch14",
encoder_arch="openai/clip-vit-large-patch14",
unet_arch="CompVis/stable-diffusion-v1-4",
device="cpu",
height=512,
width=512,
num_inference_steps=30,
guidance_scale=7.5,
manual_seed=1,
) -> None:
self.height = height # default height of Stable Diffusion
self.width = width # default width of Stable Diffusion
self.num_inference_steps = num_inference_steps # Number of denoising steps
self.guidance_scale = guidance_scale # Scale for classifier-free guidance
self.device = device
self.manual_seed = manual_seed
vae = AutoencoderKL.from_pretrained(vae_arch, subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_arch)
text_encoder = CLIPTextModel.from_pretrained(encoder_arch)
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained(unet_arch, subfolder="unet")
# The noise scheduler
self.scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
# To the GPU we go!
self.vae = vae.to(self.device)
self.text_encoder = text_encoder.to(self.device)
self.unet = unet.to(self.device)
self.token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
self.position_embeddings = pos_emb_layer(position_ids)
def get_output_embeds(self, input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = (
self.text_encoder.text_model._build_causal_attention_mask(
bsz, seq_len, dtype=input_embeddings.dtype
)
)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = self.text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(self.device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = self.text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
def set_timesteps(self, scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
def latents_to_pil(self, latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def generate_with_embs(self, text_embeddings, text_input, loss_fn, loss_scale):
generator = torch.manual_seed(
self.manual_seed
) # Seed generator to create the inital latent noise
batch_size = 1
max_length = text_input.input_ids.shape[-1]
uncond_input = self.tokenizer(
[""] * batch_size,
padding="max_length",
max_length=max_length,
return_tensors="pt",
)
with torch.no_grad():
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(self.device)
)[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
self.set_timesteps(self.scheduler, self.num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, self.unet.in_channels, self.height // 8, self.width // 8),
generator=generator,
)
latents = latents.to(self.device)
latents = latents * self.scheduler.init_noise_sigma
# Loop
for i, t in tqdm(
enumerate(self.scheduler.timesteps), total=len(self.scheduler.timesteps)
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = self.scheduler.sigmas[i]
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=text_embeddings
)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if i % 5 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
# latents_x0 = latents - sigma * noise_pred
latents_x0 = self.scheduler.step(
noise_pred, t, latents
).pred_original_sample
# Decode to image space
denoised_images = (
self.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
) # range (0, 1)
# Calculate loss
loss = loss_fn(denoised_images) * loss_scale
# Occasionally print it out
# if i % 10 == 0:
# print(i, "loss:", loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
self.scheduler._step_index = self.scheduler._step_index - 1
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
return self.latents_to_pil(latents)[0]
def generate_image(
self,
prompt="A campfire (oil on canvas)",
loss_fn=None,
loss_scale=200,
concept_embed=None, # birb_embed["<birb-style>"]
):
prompt += " in the style of cs"
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
input_ids = text_input.input_ids.to(self.device)
custom_style_token = self.tokenizer.encode("cs", add_special_tokens=False)[0]
# Get token embeddings
token_embeddings = self.token_emb_layer(input_ids)
# The new embedding - our special birb word
embed_key = list(concept_embed.keys())[0]
replacement_token_embedding = concept_embed[embed_key]
# Insert this into the token embeddings
token_embeddings[
0, torch.where(input_ids[0] == custom_style_token)
] = replacement_token_embedding.to(self.device)
# token_embeddings = token_embeddings + (replacement_token_embedding * 0.9)
# Combine with pos embs
input_embeddings = token_embeddings + self.position_embeddings
# Feed through to get final output embs
modified_output_embeddings = self.get_output_embeds(input_embeddings)
# And generate an image with this:
generated_image = self.generate_with_embs(
modified_output_embeddings, text_input, loss_fn, loss_scale
)
return generated_image