File size: 8,842 Bytes
dcfb6cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from transformers import CLIPTextModel, CLIPTokenizer
from PIL import Image
from tqdm import tqdm


class StableDiffusion:
    def __init__(
        self,
        vae_arch="CompVis/stable-diffusion-v1-4",
        tokenizer_arch="openai/clip-vit-large-patch14",
        encoder_arch="openai/clip-vit-large-patch14",
        unet_arch="CompVis/stable-diffusion-v1-4",
        device="cpu",
        height=512,
        width=512,
        num_inference_steps=30,
        guidance_scale=7.5,
        manual_seed=1,
    ) -> None:
        self.height = height  # default height of Stable Diffusion
        self.width = width  # default width of Stable Diffusion
        self.num_inference_steps = num_inference_steps  # Number of denoising steps
        self.guidance_scale = guidance_scale  # Scale for classifier-free guidance
        self.device = device
        self.manual_seed = manual_seed

        vae = AutoencoderKL.from_pretrained(vae_arch, subfolder="vae")
        # Load the tokenizer and text encoder to tokenize and encode the text.
        self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_arch)
        text_encoder = CLIPTextModel.from_pretrained(encoder_arch)

        # The UNet model for generating the latents.
        unet = UNet2DConditionModel.from_pretrained(unet_arch, subfolder="unet")

        # The noise scheduler
        self.scheduler = LMSDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
        )

        # To the GPU we go!
        self.vae = vae.to(self.device)
        self.text_encoder = text_encoder.to(self.device)
        self.unet = unet.to(self.device)

        self.token_emb_layer = text_encoder.text_model.embeddings.token_embedding
        pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
        position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
        self.position_embeddings = pos_emb_layer(position_ids)

    def get_output_embeds(self, input_embeddings):
        # CLIP's text model uses causal mask, so we prepare it here:
        bsz, seq_len = input_embeddings.shape[:2]
        causal_attention_mask = (
            self.text_encoder.text_model._build_causal_attention_mask(
                bsz, seq_len, dtype=input_embeddings.dtype
            )
        )

        # Getting the output embeddings involves calling the model with passing output_hidden_states=True
        # so that it doesn't just return the pooled final predictions:
        encoder_outputs = self.text_encoder.text_model.encoder(
            inputs_embeds=input_embeddings,
            attention_mask=None,  # We aren't using an attention mask so that can be None
            causal_attention_mask=causal_attention_mask.to(self.device),
            output_attentions=None,
            output_hidden_states=True,  # We want the output embs not the final output
            return_dict=None,
        )

        # We're interested in the output hidden state only
        output = encoder_outputs[0]

        # There is a final layer norm we need to pass these through
        output = self.text_encoder.text_model.final_layer_norm(output)

        # And now they're ready!
        return output

    def set_timesteps(self, scheduler, num_inference_steps):
        scheduler.set_timesteps(num_inference_steps)
        scheduler.timesteps = scheduler.timesteps.to(torch.float32)

    def latents_to_pil(self, latents):
        # bath of latents -> list of images
        latents = (1 / 0.18215) * latents
        with torch.no_grad():
            image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
        images = (image * 255).round().astype("uint8")
        pil_images = [Image.fromarray(image) for image in images]
        return pil_images

    def generate_with_embs(self, text_embeddings, text_input, loss_fn, loss_scale):
        generator = torch.manual_seed(
            self.manual_seed
        )  # Seed generator to create the inital latent noise
        batch_size = 1

        max_length = text_input.input_ids.shape[-1]
        uncond_input = self.tokenizer(
            [""] * batch_size,
            padding="max_length",
            max_length=max_length,
            return_tensors="pt",
        )
        with torch.no_grad():
            uncond_embeddings = self.text_encoder(
                uncond_input.input_ids.to(self.device)
            )[0]
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        # Prep Scheduler
        self.set_timesteps(self.scheduler, self.num_inference_steps)

        # Prep latents
        latents = torch.randn(
            (batch_size, self.unet.in_channels, self.height // 8, self.width // 8),
            generator=generator,
        )
        latents = latents.to(self.device)
        latents = latents * self.scheduler.init_noise_sigma

        # Loop
        for i, t in tqdm(
            enumerate(self.scheduler.timesteps), total=len(self.scheduler.timesteps)
        ):
            # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
            latent_model_input = torch.cat([latents] * 2)
            sigma = self.scheduler.sigmas[i]
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # predict the noise residual
            with torch.no_grad():
                noise_pred = self.unet(
                    latent_model_input, t, encoder_hidden_states=text_embeddings
                )["sample"]

            # perform guidance
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + self.guidance_scale * (
                noise_pred_text - noise_pred_uncond
            )
            if i % 5 == 0:
                # Requires grad on the latents
                latents = latents.detach().requires_grad_()

                # Get the predicted x0:
                # latents_x0 = latents - sigma * noise_pred
                latents_x0 = self.scheduler.step(
                    noise_pred, t, latents
                ).pred_original_sample

                # Decode to image space
                denoised_images = (
                    self.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
                )  # range (0, 1)

                # Calculate loss
                loss = loss_fn(denoised_images) * loss_scale

                # Occasionally print it out
                # if i % 10 == 0:
                #     print(i, "loss:", loss.item())

                # Get gradient
                cond_grad = torch.autograd.grad(loss, latents)[0]

                # Modify the latents based on this gradient
                latents = latents.detach() - cond_grad * sigma**2
                self.scheduler._step_index = self.scheduler._step_index - 1

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents).prev_sample

        return self.latents_to_pil(latents)[0]

    def generate_image(
        self,
        prompt="A campfire (oil on canvas)",
        loss_fn=None,
        loss_scale=200,
        concept_embed=None,  # birb_embed["<birb-style>"]
    ):
        prompt += " in the style of cs"
        text_input = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        input_ids = text_input.input_ids.to(self.device)
        custom_style_token = self.tokenizer.encode("cs", add_special_tokens=False)[0]
        # Get token embeddings
        token_embeddings = self.token_emb_layer(input_ids)

        # The new embedding - our special birb word
        embed_key = list(concept_embed.keys())[0]
        replacement_token_embedding = concept_embed[embed_key]

        # Insert this into the token embeddings
        token_embeddings[
            0, torch.where(input_ids[0] == custom_style_token)
        ] = replacement_token_embedding.to(self.device)
        # token_embeddings = token_embeddings + (replacement_token_embedding * 0.9)
        # Combine with pos embs
        input_embeddings = token_embeddings + self.position_embeddings

        #  Feed through to get final output embs
        modified_output_embeddings = self.get_output_embeds(input_embeddings)

        # And generate an image with this:
        generated_image = self.generate_with_embs(
            modified_output_embeddings, text_input, loss_fn, loss_scale
        )
        return generated_image