File size: 7,306 Bytes
32d37f5
 
bffe7b3
 
32d37f5
bffe7b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d37f5
 
 
bffe7b3
32d37f5
 
bffe7b3
 
 
 
 
 
 
 
 
 
32d37f5
 
bffe7b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d37f5
bffe7b3
32d37f5
 
bffe7b3
 
32d37f5
bffe7b3
 
 
 
 
 
 
 
 
 
 
 
32d37f5
bffe7b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32d37f5
bffe7b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import streamlit as st
import time
from typing import List
from streamlit_webrtc import webrtc_streamer, WebRtcMode
import logging
import mediapipe as mp
import tflite_runtime.interpreter as tflite
import av
import numpy as np
import queue
from streamlit_toggle import st_toggle_switch
import pandas as pd
from tools.nametypes import Stats, Detection
from pathlib import Path
from tools.utils import get_ice_servers, download_file, display_match, rgb
from tools.face_recognition import (
    detect_faces,
    align_faces,
    inference,
    draw_detections,
    recognize_faces,
    process_gallery,
)

# TODO Error Handling!


# Set logging level to error (To avoid getting spammed by queue warnings etc.)
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.ERROR)

ROOT = Path(__file__).parent

MODEL_URL = (
    "https://github.com/Martlgap/FaceIDLight/releases/download/v.0.1/mobileNet.tflite"
)
MODEL_LOCAL_PATH = ROOT / "./models/mobileNet.tflite"

DETECTION_CONFIDENCE = 0.5
TRACKING_CONFIDENCE = 0.5
MAX_FACES = 2

# Set page layout for streamlit to wide
st.set_page_config(
    layout="wide", page_title="FaceID App Demo", page_icon=":sunglasses:"
)
with st.sidebar:
    st.markdown("# Preferences")
    face_rec_on = st_toggle_switch(
        "Face Recognition",
        key="activate_face_rec",
        default_value=True,
        active_color=rgb(255, 75, 75),
        track_color=rgb(50, 50, 50),
    )

    st.markdown("## Webcam")
    resolution = st.selectbox(
        "Webcam Resolution",
        [(1920, 1080), (1280, 720), (640, 360)],
        index=2,
    )
    st.markdown("## Face Detection")
    max_faces = st.number_input("Maximum Number of Faces", value=2, min_value=1)
    detection_confidence = st.slider(
        "Min Detection Confidence", min_value=0.0, max_value=1.0, value=0.5
    )
    tracking_confidence = st.slider(
        "Min Tracking Confidence", min_value=0.0, max_value=1.0, value=0.9
    )
    on_draw = st_toggle_switch(
        "Show Drawings",
        key="show_drawings",
        default_value=True,
        active_color=rgb(255, 75, 75),
        track_color=rgb(100, 100, 100),
    )
    st.markdown("## Face Recognition")
    similarity_threshold = st.slider(
        "Similarity Threshold", min_value=0.0, max_value=2.0, value=0.67
    )

download_file(
    MODEL_URL,
    MODEL_LOCAL_PATH,
    file_hash="6c19b789f661caa8da735566490bfd8895beffb2a1ec97a56b126f0539991aa6",
)

# Session-specific caching of the face recognition model
cache_key = "face_id_model"
if cache_key in st.session_state:
    face_recognition_model = st.session_state[cache_key]
else:
    face_recognition_model = tflite.Interpreter(model_path=MODEL_LOCAL_PATH.as_posix())
    st.session_state[cache_key] = face_recognition_model

# Session-specific caching of the face detection model
cache_key = "face_detection_model"
if cache_key in st.session_state:
    face_detection_model = st.session_state[cache_key]
else:
    face_detection_model = mp.solutions.face_mesh.FaceMesh(
        refine_landmarks=True,
        min_detection_confidence=detection_confidence,
        min_tracking_confidence=tracking_confidence,
        max_num_faces=max_faces,
    )
    st.session_state[cache_key] = face_detection_model

stats_queue: "queue.Queue[Stats]" = queue.Queue()
detections_queue: "queue.Queue[List[Detection]]" = queue.Queue()


def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
    detections = None
    frame_start = time.time()

    # Convert frame to numpy array
    frame = frame.to_ndarray(format="rgb24")

    # Get frame resolution
    resolution = frame.shape

    start = time.time()
    if face_rec_on:
        detections = detect_faces(frame, face_detection_model)
    time_detection = (time.time() - start) * 1000

    start = time.time()
    if face_rec_on:
        detections = align_faces(frame, detections)
    time_normalization = (time.time() - start) * 1000

    start = time.time()
    if face_rec_on:
        detections = inference(detections, face_recognition_model)
    time_inference = (time.time() - start) * 1000

    start = time.time()
    if face_rec_on:
        detections = recognize_faces(detections, gallery, similarity_threshold)
    time_recognition = (time.time() - start) * 1000

    start = time.time()
    if face_rec_on and on_draw:
        frame = draw_detections(frame, detections)
    time_drawing = (time.time() - start) * 1000

    # Convert frame back to av.VideoFrame
    frame = av.VideoFrame.from_ndarray(frame, format="rgb24")

    # Put detections, stats and timings into queues (to be accessible by other thread)
    if face_rec_on:
        detections_queue.put(detections)
    stats_queue.put(
        Stats(
            fps=1 / (time.time() - frame_start),
            resolution=resolution,
            num_faces=len(detections) if detections else 0,
            detection=time_detection,
            normalization=time_normalization,
            inference=time_inference,
            recognition=time_recognition,
            drawing=time_drawing,
        )
    )

    return frame


# Streamlit app
st.title("FaceID App Demonstration")

st.sidebar.markdown("**Gallery**")
gallery = st.sidebar.file_uploader(
    "Upload images to gallery", type=["png", "jpg", "jpeg"], accept_multiple_files=True
)
if gallery:
    gallery = process_gallery(gallery, face_detection_model, face_recognition_model)
    st.sidebar.markdown("**Gallery Images**")
    st.sidebar.image(
        [identity.image for identity in gallery],
        caption=[identity.name for identity in gallery],
        width=112,
    )

st.markdown("**Stats**")
stats = st.empty()

ctx = webrtc_streamer(
    key="FaceIDAppDemo",
    mode=WebRtcMode.SENDRECV,
    rtc_configuration={"iceServers": get_ice_servers("twilio")},
    video_frame_callback=video_frame_callback,
    media_stream_constraints={
        "video": {
            "width": {
                "min": resolution[0],
                "ideal": resolution[0],
                "max": resolution[0],
            }
        },
        "audio": False,
    },
    async_processing=False,  # WHAT IS THIS?
)

st.markdown("**Timings [ms]**")
timings = st.empty()

st.markdown("**Identified Faces**")
identified_faces = st.empty()

st.markdown("**Detections**")
detections = st.empty()

# Display Live Stats
if ctx.state.playing:
    while True:
        stats_dataframe = pd.DataFrame([stats_queue.get()])
        stats.dataframe(stats_dataframe.style.format(thousands=" ", precision=2))

        detections_data = detections_queue.get()
        detections_dataframe = pd.DataFrame(detections_data).drop(
            columns=["face", "face_match"], errors="ignore"
        )
        # Apply formatting to DataFrame
        # print(detections_dataframe.columns)
        # detections_dataframe["embedding"] = detections_dataframe["embedding"].embedding.applymap(format_floats)

        detections.dataframe(detections_dataframe)

        identified_faces.image(
            [display_match(d) for d in detections_data if d.name is not None],
            caption=[
                d.name + f"({d.distance:2f})"
                for d in detections_data
                if d.name is not None
            ],
            width=112,
        )  # TODO formatting

        # time.sleep(1)