Spaces:
Sleeping
Sleeping
testing on hugging
Browse files- app.py +227 -63
- app_bak.py +0 -299
- packages.txt +1 -0
- tools/.DS_Store +0 -0
- tools/alignment.py +0 -39
- tools/annotation.py +0 -121
- tools/detection.py +0 -44
- tools/face_recognition.py +204 -0
- tools/identification.py +0 -47
- tools/nametypes.py +30 -0
- tools/utils.py +165 -59
- tools/webcam.py +0 -38
app.py
CHANGED
@@ -1,79 +1,243 @@
|
|
1 |
import streamlit as st
|
2 |
import time
|
3 |
-
from
|
|
|
4 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
# Set logging level to error (To avoid getting spammed by queue warnings etc.)
|
|
|
8 |
logging.basicConfig(level=logging.ERROR)
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Set page layout for streamlit to wide
|
12 |
-
st.set_page_config(
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
""
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
webcam = init_webcam()
|
46 |
|
47 |
-
# KPI Section
|
48 |
-
st.markdown("**Stats**")
|
49 |
-
kpi = KPI(["**FrameRate**"])
|
50 |
-
st.markdown("---")
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
st.markdown("---")
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
# DISPLAY THE LIVE STREAM --------------------------------------------------
|
69 |
-
stream_display.image(
|
70 |
-
frame, channels="RGB", caption="Live-Stream", use_column_width=True
|
71 |
-
)
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import time
|
3 |
+
from typing import List
|
4 |
+
from streamlit_webrtc import webrtc_streamer, WebRtcMode
|
5 |
import logging
|
6 |
+
import mediapipe as mp
|
7 |
+
import tflite_runtime.interpreter as tflite
|
8 |
+
import av
|
9 |
+
import numpy as np
|
10 |
+
import queue
|
11 |
+
from streamlit_toggle import st_toggle_switch
|
12 |
+
import pandas as pd
|
13 |
+
from tools.nametypes import Stats, Detection
|
14 |
+
from pathlib import Path
|
15 |
+
from tools.utils import get_ice_servers, download_file, display_match, rgb
|
16 |
+
from tools.face_recognition import (
|
17 |
+
detect_faces,
|
18 |
+
align_faces,
|
19 |
+
inference,
|
20 |
+
draw_detections,
|
21 |
+
recognize_faces,
|
22 |
+
process_gallery,
|
23 |
+
)
|
24 |
+
|
25 |
+
# TODO Error Handling!
|
26 |
|
27 |
|
28 |
# Set logging level to error (To avoid getting spammed by queue warnings etc.)
|
29 |
+
logger = logging.getLogger(__name__)
|
30 |
logging.basicConfig(level=logging.ERROR)
|
31 |
|
32 |
+
ROOT = Path(__file__).parent
|
33 |
+
|
34 |
+
MODEL_URL = (
|
35 |
+
"https://github.com/Martlgap/FaceIDLight/releases/download/v.0.1/mobileNet.tflite"
|
36 |
+
)
|
37 |
+
MODEL_LOCAL_PATH = ROOT / "./models/mobileNet.tflite"
|
38 |
+
|
39 |
+
DETECTION_CONFIDENCE = 0.5
|
40 |
+
TRACKING_CONFIDENCE = 0.5
|
41 |
+
MAX_FACES = 2
|
42 |
|
43 |
# Set page layout for streamlit to wide
|
44 |
+
st.set_page_config(
|
45 |
+
layout="wide", page_title="FaceID App Demo", page_icon=":sunglasses:"
|
46 |
+
)
|
47 |
+
with st.sidebar:
|
48 |
+
st.markdown("# Preferences")
|
49 |
+
face_rec_on = st_toggle_switch(
|
50 |
+
"Face Recognition",
|
51 |
+
key="activate_face_rec",
|
52 |
+
default_value=True,
|
53 |
+
active_color=rgb(255, 75, 75),
|
54 |
+
track_color=rgb(50, 50, 50),
|
55 |
+
)
|
56 |
+
|
57 |
+
st.markdown("## Webcam")
|
58 |
+
resolution = st.selectbox(
|
59 |
+
"Webcam Resolution",
|
60 |
+
[(1920, 1080), (1280, 720), (640, 360)],
|
61 |
+
index=2,
|
62 |
+
)
|
63 |
+
st.markdown("## Face Detection")
|
64 |
+
max_faces = st.number_input("Maximum Number of Faces", value=2, min_value=1)
|
65 |
+
detection_confidence = st.slider(
|
66 |
+
"Min Detection Confidence", min_value=0.0, max_value=1.0, value=0.5
|
67 |
+
)
|
68 |
+
tracking_confidence = st.slider(
|
69 |
+
"Min Tracking Confidence", min_value=0.0, max_value=1.0, value=0.9
|
70 |
+
)
|
71 |
+
on_draw = st_toggle_switch(
|
72 |
+
"Show Drawings",
|
73 |
+
key="show_drawings",
|
74 |
+
default_value=True,
|
75 |
+
active_color=rgb(255, 75, 75),
|
76 |
+
track_color=rgb(100, 100, 100),
|
77 |
+
)
|
78 |
+
st.markdown("## Face Recognition")
|
79 |
+
similarity_threshold = st.slider(
|
80 |
+
"Similarity Threshold", min_value=0.0, max_value=2.0, value=0.67
|
81 |
+
)
|
82 |
+
|
83 |
+
download_file(
|
84 |
+
MODEL_URL,
|
85 |
+
MODEL_LOCAL_PATH,
|
86 |
+
file_hash="6c19b789f661caa8da735566490bfd8895beffb2a1ec97a56b126f0539991aa6",
|
87 |
+
)
|
88 |
+
|
89 |
+
# Session-specific caching of the face recognition model
|
90 |
+
cache_key = "face_id_model"
|
91 |
+
if cache_key in st.session_state:
|
92 |
+
face_recognition_model = st.session_state[cache_key]
|
93 |
+
else:
|
94 |
+
face_recognition_model = tflite.Interpreter(model_path=MODEL_LOCAL_PATH.as_posix())
|
95 |
+
st.session_state[cache_key] = face_recognition_model
|
96 |
+
|
97 |
+
# Session-specific caching of the face detection model
|
98 |
+
cache_key = "face_detection_model"
|
99 |
+
if cache_key in st.session_state:
|
100 |
+
face_detection_model = st.session_state[cache_key]
|
101 |
+
else:
|
102 |
+
face_detection_model = mp.solutions.face_mesh.FaceMesh(
|
103 |
+
refine_landmarks=True,
|
104 |
+
min_detection_confidence=detection_confidence,
|
105 |
+
min_tracking_confidence=tracking_confidence,
|
106 |
+
max_num_faces=max_faces,
|
107 |
+
)
|
108 |
+
st.session_state[cache_key] = face_detection_model
|
109 |
+
|
110 |
+
stats_queue: "queue.Queue[Stats]" = queue.Queue()
|
111 |
+
detections_queue: "queue.Queue[List[Detection]]" = queue.Queue()
|
112 |
+
|
113 |
+
|
114 |
+
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
115 |
+
detections = None
|
116 |
+
frame_start = time.time()
|
117 |
+
|
118 |
+
# Convert frame to numpy array
|
119 |
+
frame = frame.to_ndarray(format="rgb24")
|
120 |
+
|
121 |
+
# Get frame resolution
|
122 |
+
resolution = frame.shape
|
123 |
+
|
124 |
+
start = time.time()
|
125 |
+
if face_rec_on:
|
126 |
+
detections = detect_faces(frame, face_detection_model)
|
127 |
+
time_detection = (time.time() - start) * 1000
|
128 |
+
|
129 |
+
start = time.time()
|
130 |
+
if face_rec_on:
|
131 |
+
detections = align_faces(frame, detections)
|
132 |
+
time_normalization = (time.time() - start) * 1000
|
133 |
+
|
134 |
+
start = time.time()
|
135 |
+
if face_rec_on:
|
136 |
+
detections = inference(detections, face_recognition_model)
|
137 |
+
time_inference = (time.time() - start) * 1000
|
138 |
+
|
139 |
+
start = time.time()
|
140 |
+
if face_rec_on:
|
141 |
+
detections = recognize_faces(detections, gallery, similarity_threshold)
|
142 |
+
time_recognition = (time.time() - start) * 1000
|
143 |
+
|
144 |
+
start = time.time()
|
145 |
+
if face_rec_on and on_draw:
|
146 |
+
frame = draw_detections(frame, detections)
|
147 |
+
time_drawing = (time.time() - start) * 1000
|
148 |
+
|
149 |
+
# Convert frame back to av.VideoFrame
|
150 |
+
frame = av.VideoFrame.from_ndarray(frame, format="rgb24")
|
151 |
+
|
152 |
+
# Put detections, stats and timings into queues (to be accessible by other thread)
|
153 |
+
if face_rec_on:
|
154 |
+
detections_queue.put(detections)
|
155 |
+
stats_queue.put(
|
156 |
+
Stats(
|
157 |
+
fps=1 / (time.time() - frame_start),
|
158 |
+
resolution=resolution,
|
159 |
+
num_faces=len(detections) if detections else 0,
|
160 |
+
detection=time_detection,
|
161 |
+
normalization=time_normalization,
|
162 |
+
inference=time_inference,
|
163 |
+
recognition=time_recognition,
|
164 |
+
drawing=time_drawing,
|
165 |
+
)
|
166 |
+
)
|
167 |
|
168 |
+
return frame
|
|
|
169 |
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
# Streamlit app
|
172 |
+
st.title("FaceID App Demonstration")
|
|
|
173 |
|
174 |
+
st.sidebar.markdown("**Gallery**")
|
175 |
+
gallery = st.sidebar.file_uploader(
|
176 |
+
"Upload images to gallery", type=["png", "jpg", "jpeg"], accept_multiple_files=True
|
177 |
+
)
|
178 |
+
if gallery:
|
179 |
+
gallery = process_gallery(gallery, face_detection_model, face_recognition_model)
|
180 |
+
st.sidebar.markdown("**Gallery Images**")
|
181 |
+
st.sidebar.image(
|
182 |
+
[identity.image for identity in gallery],
|
183 |
+
caption=[identity.name for identity in gallery],
|
184 |
+
width=112,
|
185 |
+
)
|
|
|
|
|
|
|
|
|
186 |
|
187 |
+
st.markdown("**Stats**")
|
188 |
+
stats = st.empty()
|
189 |
+
|
190 |
+
ctx = webrtc_streamer(
|
191 |
+
key="FaceIDAppDemo",
|
192 |
+
mode=WebRtcMode.SENDRECV,
|
193 |
+
rtc_configuration={"iceServers": get_ice_servers("twilio")},
|
194 |
+
video_frame_callback=video_frame_callback,
|
195 |
+
media_stream_constraints={
|
196 |
+
"video": {
|
197 |
+
"width": {
|
198 |
+
"min": resolution[0],
|
199 |
+
"ideal": resolution[0],
|
200 |
+
"max": resolution[0],
|
201 |
+
}
|
202 |
+
},
|
203 |
+
"audio": False,
|
204 |
+
},
|
205 |
+
async_processing=False, # WHAT IS THIS?
|
206 |
+
)
|
207 |
+
|
208 |
+
st.markdown("**Timings [ms]**")
|
209 |
+
timings = st.empty()
|
210 |
+
|
211 |
+
st.markdown("**Identified Faces**")
|
212 |
+
identified_faces = st.empty()
|
213 |
+
|
214 |
+
st.markdown("**Detections**")
|
215 |
+
detections = st.empty()
|
216 |
+
|
217 |
+
# Display Live Stats
|
218 |
+
if ctx.state.playing:
|
219 |
+
while True:
|
220 |
+
stats_dataframe = pd.DataFrame([stats_queue.get()])
|
221 |
+
stats.dataframe(stats_dataframe.style.format(thousands=" ", precision=2))
|
222 |
|
223 |
+
detections_data = detections_queue.get()
|
224 |
+
detections_dataframe = pd.DataFrame(detections_data).drop(
|
225 |
+
columns=["face", "face_match"], errors="ignore"
|
226 |
+
)
|
227 |
+
# Apply formatting to DataFrame
|
228 |
+
# print(detections_dataframe.columns)
|
229 |
+
# detections_dataframe["embedding"] = detections_dataframe["embedding"].embedding.applymap(format_floats)
|
230 |
+
|
231 |
+
detections.dataframe(detections_dataframe)
|
232 |
+
|
233 |
+
identified_faces.image(
|
234 |
+
[display_match(d) for d in detections_data if d.name is not None],
|
235 |
+
caption=[
|
236 |
+
d.name + f"({d.distance:2f})"
|
237 |
+
for d in detections_data
|
238 |
+
if d.name is not None
|
239 |
+
],
|
240 |
+
width=112,
|
241 |
+
) # TODO formatting
|
242 |
+
|
243 |
+
# time.sleep(1)
|
app_bak.py
DELETED
@@ -1,299 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import streamlit_toggle as tog
|
3 |
-
import time
|
4 |
-
import numpy as np
|
5 |
-
import cv2
|
6 |
-
from tools.annotation import draw_mesh, draw_landmarks, draw_bounding_box, draw_text
|
7 |
-
from tools.alignment import align_faces
|
8 |
-
from tools.identification import load_identification_model, inference, identify
|
9 |
-
from tools.utils import show_images, show_faces, rgb
|
10 |
-
from tools.detection import load_detection_model, detect_faces
|
11 |
-
from tools.webcam import init_webcam
|
12 |
-
import logging
|
13 |
-
|
14 |
-
|
15 |
-
# Set logging level to error (To avoid getting spammed by queue warnings etc.)
|
16 |
-
logging.basicConfig(level=logging.ERROR)
|
17 |
-
|
18 |
-
|
19 |
-
# Set page layout for streamlit to wide
|
20 |
-
st.set_page_config(layout="wide")
|
21 |
-
|
22 |
-
|
23 |
-
# Initialize the Face Detection and Identification Models
|
24 |
-
detection_model = load_detection_model(max_faces=2, detection_confidence=0.5, tracking_confidence=0.9)
|
25 |
-
identification_model = load_identification_model(name="MobileNet")
|
26 |
-
|
27 |
-
|
28 |
-
# Gallery Processing
|
29 |
-
@st.cache_data
|
30 |
-
def gallery_processing(gallery_files):
|
31 |
-
"""Process the gallery images (Complete Face Recognition Pipeline)
|
32 |
-
|
33 |
-
Args:
|
34 |
-
gallery_files (_type_): Files uploaded by the user
|
35 |
-
|
36 |
-
Returns:
|
37 |
-
_type_: Gallery Images, Gallery Embeddings, Gallery Names
|
38 |
-
"""
|
39 |
-
gallery_images, gallery_embs, gallery_names = [], [], []
|
40 |
-
if gallery_files is not None:
|
41 |
-
for file in gallery_files:
|
42 |
-
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
|
43 |
-
img = cv2.cvtColor(
|
44 |
-
cv2.imdecode(file_bytes, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB
|
45 |
-
)
|
46 |
-
gallery_names.append(
|
47 |
-
file.name.split(".jpg")[0].split(".png")[0].split(".jpeg")[0]
|
48 |
-
)
|
49 |
-
detections = detect_faces(img, detection_model)
|
50 |
-
aligned_faces = align_faces(img, np.asarray([detections[0]]))
|
51 |
-
gallery_images.append(aligned_faces[0])
|
52 |
-
gallery_embs.append(inference(aligned_faces, identification_model)[0])
|
53 |
-
return gallery_images, gallery_embs, gallery_names
|
54 |
-
|
55 |
-
|
56 |
-
class SideBar:
|
57 |
-
"""A class to handle the sidebar
|
58 |
-
"""
|
59 |
-
def __init__(self):
|
60 |
-
with st.sidebar:
|
61 |
-
st.markdown("# Preferences")
|
62 |
-
self.on_face_recognition = tog.st_toggle_switch(
|
63 |
-
"Face Recognition", key="activate_face_rec", default_value=True, active_color=rgb(255, 75, 75), track_color=rgb(50, 50, 50)
|
64 |
-
)
|
65 |
-
|
66 |
-
st.markdown("---")
|
67 |
-
|
68 |
-
st.markdown("## Webcam")
|
69 |
-
self.resolution = st.selectbox(
|
70 |
-
"Webcam Resolution",
|
71 |
-
[(1920, 1080), (1280, 720), (640, 360)],
|
72 |
-
index=2,
|
73 |
-
)
|
74 |
-
st.markdown("To change webcam resolution: Please refresh page and select resolution before starting webcam stream.")
|
75 |
-
|
76 |
-
st.markdown("---")
|
77 |
-
st.markdown("## Face Detection")
|
78 |
-
self.max_faces = st.number_input(
|
79 |
-
"Maximum Number of Faces", value=2, min_value=1
|
80 |
-
)
|
81 |
-
self.detection_confidence = st.slider(
|
82 |
-
"Min Detection Confidence", min_value=0.0, max_value=1.0, value=0.5
|
83 |
-
)
|
84 |
-
self.tracking_confidence = st.slider(
|
85 |
-
"Min Tracking Confidence", min_value=0.0, max_value=1.0, value=0.9
|
86 |
-
)
|
87 |
-
switch1, switch2 = st.columns(2)
|
88 |
-
with switch1:
|
89 |
-
self.on_bounding_box = tog.st_toggle_switch(
|
90 |
-
"Show Bounding Box", key="show_bounding_box", default_value=True, active_color=rgb(255, 75, 75), track_color=rgb(50, 50, 50)
|
91 |
-
)
|
92 |
-
with switch2:
|
93 |
-
self.on_five_landmarks = tog.st_toggle_switch(
|
94 |
-
"Show Five Landmarks", key="show_five_landmarks", default_value=True, active_color=rgb(255, 75, 75),
|
95 |
-
track_color=rgb(50, 50, 50)
|
96 |
-
)
|
97 |
-
switch3, switch4 = st.columns(2)
|
98 |
-
with switch3:
|
99 |
-
self.on_mesh = tog.st_toggle_switch(
|
100 |
-
"Show Mesh", key="show_mesh", default_value=True, active_color=rgb(255, 75, 75),
|
101 |
-
track_color=rgb(50, 50, 50)
|
102 |
-
)
|
103 |
-
with switch4:
|
104 |
-
self.on_text = tog.st_toggle_switch(
|
105 |
-
"Show Text", key="show_text", default_value=True, active_color=rgb(255, 75, 75),
|
106 |
-
track_color=rgb(50, 50, 50)
|
107 |
-
)
|
108 |
-
st.markdown("---")
|
109 |
-
|
110 |
-
st.markdown("## Face Recognition")
|
111 |
-
self.similarity_threshold = st.slider(
|
112 |
-
"Similarity Threshold", min_value=0.0, max_value=2.0, value=0.67
|
113 |
-
)
|
114 |
-
|
115 |
-
self.on_show_faces = tog.st_toggle_switch(
|
116 |
-
"Show Recognized Faces", key="show_recognized_faces", default_value=True, active_color=rgb(255, 75, 75), track_color=rgb(50, 50, 50)
|
117 |
-
)
|
118 |
-
|
119 |
-
self.model_name = st.selectbox(
|
120 |
-
"Model",
|
121 |
-
["MobileNet", "ResNet"],
|
122 |
-
index=0,
|
123 |
-
)
|
124 |
-
st.markdown("---")
|
125 |
-
|
126 |
-
st.markdown("## Gallery")
|
127 |
-
self.uploaded_files = st.file_uploader(
|
128 |
-
"Choose multiple images to upload", accept_multiple_files=True
|
129 |
-
)
|
130 |
-
|
131 |
-
self.gallery_images, self.gallery_embs, self.gallery_names= gallery_processing(self.uploaded_files)
|
132 |
-
|
133 |
-
st.markdown("**Gallery Faces**")
|
134 |
-
show_images(self.gallery_images, self.gallery_names, 3)
|
135 |
-
st.markdown("---")
|
136 |
-
|
137 |
-
|
138 |
-
class KPI:
|
139 |
-
"""Class for displaying KPIs in a row
|
140 |
-
Args:
|
141 |
-
keys (list): List of KPI names
|
142 |
-
"""
|
143 |
-
def __init__(self, keys):
|
144 |
-
self.kpi_texts = []
|
145 |
-
row = st.columns(len(keys))
|
146 |
-
for kpi, key in zip(row, keys):
|
147 |
-
with kpi:
|
148 |
-
item_row = st.columns(2)
|
149 |
-
item_row[0].markdown(f"**{key}**:")
|
150 |
-
self.kpi_texts.append(item_row[1].markdown("-"))
|
151 |
-
|
152 |
-
def update_kpi(self, kpi_values):
|
153 |
-
for kpi_text, kpi_value in zip(self.kpi_texts, kpi_values):
|
154 |
-
kpi_text.write(
|
155 |
-
f"<h5 style='text-align: center; color: red;'>{kpi_value:.2f}</h5>"
|
156 |
-
if isinstance(kpi_value, float)
|
157 |
-
else f"<h5 style='text-align: center; color: red;'>{kpi_value}</h5>",
|
158 |
-
unsafe_allow_html=True,
|
159 |
-
)
|
160 |
-
|
161 |
-
# -----------------------------------------------------------------------------------------------
|
162 |
-
# Streamlit App
|
163 |
-
st.title("FaceID App Demonstration")
|
164 |
-
|
165 |
-
# Sidebar
|
166 |
-
sb = SideBar()
|
167 |
-
|
168 |
-
# Get Access to Webcam
|
169 |
-
webcam = init_webcam(width=sb.resolution[0])
|
170 |
-
|
171 |
-
# KPI Section
|
172 |
-
st.markdown("**Stats**")
|
173 |
-
kpi = KPI([
|
174 |
-
"**FrameRate**",
|
175 |
-
"**Detected Faces**",
|
176 |
-
"**Image Dims**",
|
177 |
-
"**Detection [ms]**",
|
178 |
-
"**Normalization [ms]**",
|
179 |
-
"**Inference [ms]**",
|
180 |
-
"**Recognition [ms]**",
|
181 |
-
"**Annotations [ms]**",
|
182 |
-
"**Show Faces [ms]**",
|
183 |
-
])
|
184 |
-
st.markdown("---")
|
185 |
-
|
186 |
-
# Live Stream Display
|
187 |
-
stream_display = st.empty()
|
188 |
-
st.markdown("---")
|
189 |
-
|
190 |
-
# Display Detected Faces
|
191 |
-
st.markdown("**Detected Faces**")
|
192 |
-
face_window = st.empty()
|
193 |
-
st.markdown("---")
|
194 |
-
|
195 |
-
|
196 |
-
if webcam:
|
197 |
-
prevTime = 0
|
198 |
-
while True:
|
199 |
-
# Init times to "-" to show something if face recognition is turned off
|
200 |
-
time_detection = "-"
|
201 |
-
time_alignment = "-"
|
202 |
-
time_inference = "-"
|
203 |
-
time_identification = "-"
|
204 |
-
time_annotations = "-"
|
205 |
-
time_show_faces = "-"
|
206 |
-
|
207 |
-
try:
|
208 |
-
# Get Frame from Webcam
|
209 |
-
frame = webcam.get_frame(timeout=1)
|
210 |
-
|
211 |
-
# Convert to OpenCV Image
|
212 |
-
frame = frame.to_ndarray(format="rgb24")
|
213 |
-
except:
|
214 |
-
continue
|
215 |
-
|
216 |
-
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
217 |
-
# FACE RECOGNITION PIPELINE
|
218 |
-
if sb.on_face_recognition:
|
219 |
-
# FACE DETECTION ---------------------------------------------------------
|
220 |
-
start_time = time.time()
|
221 |
-
detections = detect_faces(frame, detection_model)
|
222 |
-
time_detection = (time.time() - start_time) * 1000
|
223 |
-
|
224 |
-
# FACE ALIGNMENT ---------------------------------------------------------
|
225 |
-
start_time = time.time()
|
226 |
-
aligned_faces = align_faces(frame, detections)
|
227 |
-
time_alignment = (time.time() - start_time) * 1000
|
228 |
-
|
229 |
-
# INFERENCE --------------------------------------------------------------
|
230 |
-
start_time = time.time()
|
231 |
-
if len(sb.gallery_embs) > 0:
|
232 |
-
faces_embs = inference(aligned_faces, identification_model)
|
233 |
-
else:
|
234 |
-
faces_embs = []
|
235 |
-
time_inference = (time.time() - start_time) * 1000
|
236 |
-
|
237 |
-
# FACE IDENTIFCATION -----------------------------------------------------
|
238 |
-
start_time = time.time()
|
239 |
-
if len(faces_embs) > 0 and len(sb.gallery_embs) > 0:
|
240 |
-
ident_names, ident_dists, ident_imgs = identify(faces_embs, sb.gallery_embs, sb.gallery_names, sb.gallery_images, thresh=sb.similarity_threshold)
|
241 |
-
else:
|
242 |
-
ident_names, ident_dists, ident_imgs = [], [], []
|
243 |
-
time_identification = (time.time() - start_time) * 1000
|
244 |
-
|
245 |
-
# ANNOTATIONS ------------------------------------------------------------
|
246 |
-
start_time = time.time()
|
247 |
-
frame = cv2.resize(frame, (1920, 1080)) # to make annotation in HD
|
248 |
-
frame.flags.writeable = True # (hack to make annotations faster)
|
249 |
-
if sb.on_mesh:
|
250 |
-
frame = draw_mesh(frame, detections)
|
251 |
-
if sb.on_five_landmarks:
|
252 |
-
frame = draw_landmarks(frame, detections)
|
253 |
-
if sb.on_bounding_box:
|
254 |
-
frame = draw_bounding_box(frame, detections, ident_names)
|
255 |
-
if sb.on_text:
|
256 |
-
frame = draw_text(frame, detections, ident_names)
|
257 |
-
time_annotations = (time.time() - start_time) * 1000
|
258 |
-
|
259 |
-
# DISPLAY DETECTED FACES -------------------------------------------------
|
260 |
-
start_time = time.time()
|
261 |
-
if sb.on_show_faces:
|
262 |
-
show_faces(
|
263 |
-
aligned_faces,
|
264 |
-
ident_names,
|
265 |
-
ident_dists,
|
266 |
-
ident_imgs,
|
267 |
-
num_cols=3,
|
268 |
-
channels="RGB",
|
269 |
-
display=face_window,
|
270 |
-
)
|
271 |
-
time_show_faces = (time.time() - start_time) * 1000
|
272 |
-
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
# DISPLAY THE LIVE STREAM --------------------------------------------------
|
277 |
-
stream_display.image(
|
278 |
-
frame, channels="RGB", caption="Live-Stream", use_column_width=True
|
279 |
-
)
|
280 |
-
|
281 |
-
# CALCULATE FPS -----------------------------------------------------------
|
282 |
-
currTime = time.time()
|
283 |
-
fps = 1 / (currTime - prevTime)
|
284 |
-
prevTime = currTime
|
285 |
-
|
286 |
-
# UPDATE KPIS -------------------------------------------------------------
|
287 |
-
kpi.update_kpi(
|
288 |
-
[
|
289 |
-
fps,
|
290 |
-
len(detections),
|
291 |
-
sb.resolution,
|
292 |
-
time_detection,
|
293 |
-
time_alignment,
|
294 |
-
time_inference,
|
295 |
-
time_identification,
|
296 |
-
time_annotations,
|
297 |
-
time_show_faces,
|
298 |
-
]
|
299 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
libgl1-mesa-glx
|
tools/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
tools/alignment.py
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
from skimage.transform import SimilarityTransform
|
4 |
-
|
5 |
-
|
6 |
-
FIVE_LANDMARKS = [470, 475, 1, 57, 287]
|
7 |
-
|
8 |
-
|
9 |
-
def align(img, landmarks, target_size=(112, 112)):
|
10 |
-
dst = np.array(
|
11 |
-
[
|
12 |
-
[
|
13 |
-
landmarks.landmark[i].x * img.shape[1],
|
14 |
-
landmarks.landmark[i].y * img.shape[0],
|
15 |
-
]
|
16 |
-
for i in FIVE_LANDMARKS
|
17 |
-
],
|
18 |
-
)
|
19 |
-
|
20 |
-
src = np.array(
|
21 |
-
[
|
22 |
-
[38.2946, 51.6963],
|
23 |
-
[73.5318, 51.5014],
|
24 |
-
[56.0252, 71.7366],
|
25 |
-
[41.5493, 92.3655],
|
26 |
-
[70.7299, 92.2041],
|
27 |
-
],
|
28 |
-
dtype=np.float32,
|
29 |
-
)
|
30 |
-
tform = SimilarityTransform()
|
31 |
-
tform.estimate(dst, src)
|
32 |
-
tmatrix = tform.params[0:2, :]
|
33 |
-
return cv2.warpAffine(img, tmatrix, target_size, borderValue=0.0)
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
def align_faces(img, detections):
|
38 |
-
aligned_faces = [align(img, detection.multi_face_landmarks) for detection in detections]
|
39 |
-
return aligned_faces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools/annotation.py
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
import cv2
|
2 |
-
import mediapipe as mp
|
3 |
-
import streamlit as st
|
4 |
-
|
5 |
-
|
6 |
-
FIVE_LANDMARKS = [470, 475, 1, 57, 287]
|
7 |
-
FACE_CONNECTIONS = mp.solutions.face_mesh_connections.FACEMESH_TESSELATION
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
def draw_bounding_box(img, detections, ident_names, margin=10):
|
12 |
-
# Draw the bounding box on the original frame
|
13 |
-
for detection, name in zip(detections, ident_names):
|
14 |
-
|
15 |
-
color = (255, 0, 0) if name == "Unknown" else (0, 255, 0)
|
16 |
-
|
17 |
-
x_coords = [
|
18 |
-
landmark.x * img.shape[1] for landmark in detection.multi_face_landmarks.landmark
|
19 |
-
]
|
20 |
-
y_coords = [
|
21 |
-
landmark.y * img.shape[0] for landmark in detection.multi_face_landmarks.landmark
|
22 |
-
]
|
23 |
-
|
24 |
-
x_min, x_max = int(min(x_coords) - margin), int(max(x_coords) + margin)
|
25 |
-
y_min, y_max = int(min(y_coords) - margin), int(max(y_coords) + margin)
|
26 |
-
|
27 |
-
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color, 2)
|
28 |
-
cv2.rectangle(img, (x_min, y_min - img.shape[0] // 25), (x_max, y_min), color, -1)
|
29 |
-
|
30 |
-
return img
|
31 |
-
|
32 |
-
|
33 |
-
def draw_text(
|
34 |
-
img,
|
35 |
-
detections,
|
36 |
-
ident_names,
|
37 |
-
margin=10,
|
38 |
-
font_scale=1,
|
39 |
-
font_color=(0, 0, 0),
|
40 |
-
font=cv2.FONT_HERSHEY_SIMPLEX,
|
41 |
-
):
|
42 |
-
|
43 |
-
font_scale = img.shape[0] / 1000
|
44 |
-
for detection, name in zip(detections, ident_names):
|
45 |
-
x_coords = [
|
46 |
-
landmark.x * img.shape[1] for landmark in detection.multi_face_landmarks.landmark
|
47 |
-
]
|
48 |
-
y_coords = [
|
49 |
-
landmark.y * img.shape[0] for landmark in detection.multi_face_landmarks.landmark
|
50 |
-
]
|
51 |
-
|
52 |
-
x_min = int(min(x_coords) - margin)
|
53 |
-
y_min = int(min(y_coords) - margin)
|
54 |
-
|
55 |
-
cv2.putText(
|
56 |
-
img,
|
57 |
-
name,
|
58 |
-
(x_min + img.shape[0] // 400, y_min - img.shape[0] // 100),
|
59 |
-
font,
|
60 |
-
font_scale,
|
61 |
-
font_color,
|
62 |
-
2,
|
63 |
-
)
|
64 |
-
|
65 |
-
return img
|
66 |
-
|
67 |
-
|
68 |
-
def draw_mesh(img, detections):
|
69 |
-
for detection in detections:
|
70 |
-
# Draw the connections
|
71 |
-
for connection in FACE_CONNECTIONS:
|
72 |
-
cv2.line(
|
73 |
-
img,
|
74 |
-
(
|
75 |
-
int(detection.multi_face_landmarks.landmark[connection[0]].x * img.shape[1]),
|
76 |
-
int(detection.multi_face_landmarks.landmark[connection[0]].y * img.shape[0]),
|
77 |
-
),
|
78 |
-
(
|
79 |
-
int(detection.multi_face_landmarks.landmark[connection[1]].x * img.shape[1]),
|
80 |
-
int(detection.multi_face_landmarks.landmark[connection[1]].y * img.shape[0]),
|
81 |
-
),
|
82 |
-
(255, 255, 255),
|
83 |
-
1,
|
84 |
-
)
|
85 |
-
|
86 |
-
# Draw the landmarks
|
87 |
-
for points in detection.multi_face_landmarks.landmark:
|
88 |
-
cv2.circle(
|
89 |
-
img,
|
90 |
-
(
|
91 |
-
int(points.x * img.shape[1]),
|
92 |
-
int(points.y * img.shape[0]),
|
93 |
-
),
|
94 |
-
1,
|
95 |
-
(0, 255, 0),
|
96 |
-
-1,
|
97 |
-
)
|
98 |
-
return img
|
99 |
-
|
100 |
-
|
101 |
-
def draw_landmarks(img, detections):
|
102 |
-
# Draw the face landmarks on the original frame
|
103 |
-
for points in FIVE_LANDMARKS:
|
104 |
-
for detection in detections:
|
105 |
-
cv2.circle(
|
106 |
-
img,
|
107 |
-
(
|
108 |
-
int(
|
109 |
-
detection.multi_face_landmarks.landmark[points].x
|
110 |
-
* img.shape[1]
|
111 |
-
),
|
112 |
-
int(
|
113 |
-
detection.multi_face_landmarks.landmark[points].y
|
114 |
-
* img.shape[0]
|
115 |
-
),
|
116 |
-
),
|
117 |
-
5,
|
118 |
-
(0, 0, 255),
|
119 |
-
-1,
|
120 |
-
)
|
121 |
-
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools/detection.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
import mediapipe as mp
|
2 |
-
import streamlit as st
|
3 |
-
|
4 |
-
|
5 |
-
class Detection:
|
6 |
-
multi_face_bboxes = []
|
7 |
-
multi_face_landmarks = []
|
8 |
-
|
9 |
-
|
10 |
-
#@st.cache_resource
|
11 |
-
def load_detection_model(max_faces=2, detection_confidence=0.5, tracking_confidence=0.5):
|
12 |
-
model = mp.solutions.face_mesh.FaceMesh(
|
13 |
-
refine_landmarks=True,
|
14 |
-
min_detection_confidence=detection_confidence,
|
15 |
-
min_tracking_confidence=tracking_confidence,
|
16 |
-
max_num_faces=max_faces,
|
17 |
-
)
|
18 |
-
return model
|
19 |
-
|
20 |
-
|
21 |
-
def detect_faces(frame, model):
|
22 |
-
|
23 |
-
# Process the frame with MediaPipe Face Mesh
|
24 |
-
results = model.process(frame)
|
25 |
-
|
26 |
-
# Get the Bounding Boxes from the detected faces
|
27 |
-
detections = []
|
28 |
-
if results.multi_face_landmarks:
|
29 |
-
for landmarks in results.multi_face_landmarks:
|
30 |
-
x_coords = [
|
31 |
-
landmark.x * frame.shape[1] for landmark in landmarks.landmark
|
32 |
-
]
|
33 |
-
y_coords = [
|
34 |
-
landmark.y * frame.shape[0] for landmark in landmarks.landmark
|
35 |
-
]
|
36 |
-
|
37 |
-
x_min, x_max = int(min(x_coords)), int(max(x_coords))
|
38 |
-
y_min, y_max = int(min(y_coords)), int(max(y_coords))
|
39 |
-
|
40 |
-
detection = Detection()
|
41 |
-
detection.multi_face_bboxes=[x_min, y_min, x_max, y_max]
|
42 |
-
detection.multi_face_landmarks=landmarks
|
43 |
-
detections.append(detection)
|
44 |
-
return detections
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools/face_recognition.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .nametypes import Detection, Identity
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
from sklearn.metrics.pairwise import cosine_distances
|
5 |
+
from skimage.transform import SimilarityTransform
|
6 |
+
|
7 |
+
|
8 |
+
def detect_faces(frame, model):
|
9 |
+
# Process the frame with MediaPipe Face Mesh
|
10 |
+
results = model.process(frame)
|
11 |
+
|
12 |
+
# Get the Bounding Boxes from the detected faces
|
13 |
+
detections = []
|
14 |
+
if results.multi_face_landmarks:
|
15 |
+
for face in results.multi_face_landmarks:
|
16 |
+
xs = [landmark.x for landmark in face.landmark]
|
17 |
+
ys = [landmark.y for landmark in face.landmark]
|
18 |
+
bbox = [min(xs), min(ys), max(xs), max(ys)]
|
19 |
+
|
20 |
+
FIVE_LANDMARKS = [470, 475, 1, 57, 287]
|
21 |
+
|
22 |
+
landmarks = [
|
23 |
+
[face.landmark[i].x, face.landmark[i].y] for i in FIVE_LANDMARKS
|
24 |
+
]
|
25 |
+
|
26 |
+
detections.append(Detection(bbox=bbox, landmarks=landmarks))
|
27 |
+
return detections
|
28 |
+
|
29 |
+
|
30 |
+
def align(img, landmarks, target_size=(112, 112)):
|
31 |
+
# Transform to Landmark-Coordinates from relative landmark positions
|
32 |
+
dst = np.asarray(landmarks) * img.shape[:2][::-1]
|
33 |
+
|
34 |
+
# Target Landmarks-Coordinates from ArcFace Paper
|
35 |
+
src = np.array(
|
36 |
+
[
|
37 |
+
[38.2946, 51.6963],
|
38 |
+
[73.5318, 51.5014],
|
39 |
+
[56.0252, 71.7366],
|
40 |
+
[41.5493, 92.3655],
|
41 |
+
[70.7299, 92.2041],
|
42 |
+
],
|
43 |
+
dtype=np.float32,
|
44 |
+
)
|
45 |
+
|
46 |
+
# Estimate the transformation matrix
|
47 |
+
tform = SimilarityTransform()
|
48 |
+
tform.estimate(dst, src)
|
49 |
+
tmatrix = tform.params[0:2, :]
|
50 |
+
|
51 |
+
# Apply the transformation matrix
|
52 |
+
img = cv2.warpAffine(img, tmatrix, target_size, borderValue=0.0)
|
53 |
+
|
54 |
+
return img
|
55 |
+
|
56 |
+
|
57 |
+
def align_faces(img, detections):
|
58 |
+
updated_detections = []
|
59 |
+
for detection in detections:
|
60 |
+
updated_detections.append(
|
61 |
+
detection._replace(face=align(img, detection.landmarks))
|
62 |
+
)
|
63 |
+
return updated_detections
|
64 |
+
|
65 |
+
# TODO Error when uploading image while running!
|
66 |
+
def inference(detections, model):
|
67 |
+
updated_detections = []
|
68 |
+
faces = [detection.face for detection in detections if detection.face is not None]
|
69 |
+
|
70 |
+
if len(faces) > 0:
|
71 |
+
faces = np.asarray(faces).astype(np.float32) / 255
|
72 |
+
model.resize_tensor_input(model.get_input_details()[0]["index"], faces.shape)
|
73 |
+
model.allocate_tensors()
|
74 |
+
model.set_tensor(model.get_input_details()[0]["index"], faces)
|
75 |
+
model.invoke()
|
76 |
+
embs = [model.get_tensor(elem["index"]) for elem in model.get_output_details()][
|
77 |
+
0
|
78 |
+
]
|
79 |
+
|
80 |
+
for idx, detection in enumerate(detections):
|
81 |
+
updated_detections.append(detection._replace(emdedding=embs[idx]))
|
82 |
+
return updated_detections
|
83 |
+
|
84 |
+
|
85 |
+
def recognize_faces(detections, gallery, thresh=0.67):
|
86 |
+
|
87 |
+
if len(gallery) == 0 or len(detections) == 0:
|
88 |
+
return detections
|
89 |
+
|
90 |
+
gallery_embs = np.asarray([identity.embedding for identity in gallery])
|
91 |
+
detection_embs = np.asarray([detection.emdedding for detection in detections])
|
92 |
+
|
93 |
+
cos_distances = cosine_distances(detection_embs, gallery_embs)
|
94 |
+
|
95 |
+
updated_detections = []
|
96 |
+
for idx, detection in enumerate(detections):
|
97 |
+
idx_min = np.argmin(cos_distances[idx])
|
98 |
+
if thresh and cos_distances[idx][idx_min] > thresh:
|
99 |
+
dist = cos_distances[idx][idx_min]
|
100 |
+
pred = None
|
101 |
+
else:
|
102 |
+
dist = cos_distances[idx][idx_min]
|
103 |
+
pred = idx_min
|
104 |
+
updated_detections.append(
|
105 |
+
detection._replace(
|
106 |
+
name=gallery[pred].name.split(".jpg")[0].split(".png")[0].split(".jpeg")[0] if pred is not None else None,
|
107 |
+
emdedding_match=gallery[pred].embedding if pred is not None else None,
|
108 |
+
face_match=gallery[pred].image if pred is not None else None,
|
109 |
+
distance=dist,
|
110 |
+
)
|
111 |
+
)
|
112 |
+
|
113 |
+
return updated_detections
|
114 |
+
|
115 |
+
|
116 |
+
def process_gallery(files, face_detection_model, face_recognition_model):
|
117 |
+
gallery = []
|
118 |
+
for file in files:
|
119 |
+
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
|
120 |
+
img = cv2.cvtColor(
|
121 |
+
cv2.imdecode(file_bytes, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB
|
122 |
+
)
|
123 |
+
|
124 |
+
detections = detect_faces(img, face_detection_model)
|
125 |
+
|
126 |
+
# We accept only one face per image!
|
127 |
+
if detections == []:
|
128 |
+
continue
|
129 |
+
elif len(detections) > 1:
|
130 |
+
detections = detections[:1]
|
131 |
+
|
132 |
+
detections = align_faces(img, detections)
|
133 |
+
detections = inference(detections, face_recognition_model)
|
134 |
+
|
135 |
+
gallery.append(
|
136 |
+
Identity(
|
137 |
+
name=file.name,
|
138 |
+
embedding=detections[0].emdedding,
|
139 |
+
image=detections[0].face,
|
140 |
+
)
|
141 |
+
)
|
142 |
+
|
143 |
+
return gallery
|
144 |
+
|
145 |
+
|
146 |
+
def draw_detections(
|
147 |
+
frame, detections, bbox=True, landmarks=True, name=True, upscale=True
|
148 |
+
):
|
149 |
+
if upscale:
|
150 |
+
frame = cv2.resize(
|
151 |
+
frame, (1920, 1080)
|
152 |
+
) # Upscale frame for better visualization
|
153 |
+
|
154 |
+
shape = np.asarray(frame.shape[:2][::-1])
|
155 |
+
|
156 |
+
for detection in detections:
|
157 |
+
# Draw Landmarks
|
158 |
+
if landmarks:
|
159 |
+
for landmark in detection.landmarks:
|
160 |
+
cv2.circle(
|
161 |
+
frame,
|
162 |
+
(np.asarray(landmark) * shape).astype(int),
|
163 |
+
5,
|
164 |
+
(0, 0, 255),
|
165 |
+
-1,
|
166 |
+
)
|
167 |
+
|
168 |
+
# Draw Bounding Box
|
169 |
+
if bbox:
|
170 |
+
cv2.rectangle(
|
171 |
+
frame,
|
172 |
+
(np.asarray(detection.bbox[:2]) * shape).astype(int),
|
173 |
+
(np.asarray(detection.bbox[2:]) * shape).astype(int),
|
174 |
+
(0, 255, 0),
|
175 |
+
2,
|
176 |
+
)
|
177 |
+
|
178 |
+
# Draw Name
|
179 |
+
if name:
|
180 |
+
cv2.rectangle(
|
181 |
+
frame,
|
182 |
+
(
|
183 |
+
int(detection.bbox[0] * shape[0]),
|
184 |
+
int(detection.bbox[1] * shape[1] - (shape[1] // 25)),
|
185 |
+
),
|
186 |
+
(int(detection.bbox[2] * shape[0]), int(detection.bbox[1] * shape[1])),
|
187 |
+
(255, 255, 255),
|
188 |
+
-1,
|
189 |
+
)
|
190 |
+
|
191 |
+
cv2.putText(
|
192 |
+
frame,
|
193 |
+
detection.name,
|
194 |
+
(
|
195 |
+
int(detection.bbox[0] * shape[0] + shape[0] // 400),
|
196 |
+
int(detection.bbox[1] * shape[1] - shape[1] // 100),
|
197 |
+
),
|
198 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
199 |
+
1,
|
200 |
+
(0, 0, 0),
|
201 |
+
2,
|
202 |
+
)
|
203 |
+
|
204 |
+
return frame
|
tools/identification.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import tflite_runtime.interpreter as tflite
|
3 |
-
from sklearn.metrics.pairwise import cosine_distances
|
4 |
-
import streamlit as st
|
5 |
-
import time
|
6 |
-
|
7 |
-
|
8 |
-
MODEL_PATHS = {
|
9 |
-
"MobileNet": "./models/mobileNet.tflite",
|
10 |
-
"ResNet": "./models/resNet.tflite",
|
11 |
-
}
|
12 |
-
|
13 |
-
|
14 |
-
#@st.cache_resource
|
15 |
-
def load_identification_model(name="MobileNet"):
|
16 |
-
model = tflite.Interpreter(model_path=MODEL_PATHS[name])
|
17 |
-
return model
|
18 |
-
|
19 |
-
|
20 |
-
def inference(imgs, model):
|
21 |
-
if len(imgs) > 0:
|
22 |
-
imgs = np.asarray(imgs).astype(np.float32) / 255
|
23 |
-
model.resize_tensor_input(model.get_input_details()[0]["index"], imgs.shape)
|
24 |
-
model.allocate_tensors()
|
25 |
-
model.set_tensor(model.get_input_details()[0]["index"], imgs)
|
26 |
-
model.invoke()
|
27 |
-
embs = [model.get_tensor(elem["index"]) for elem in model.get_output_details()]
|
28 |
-
return embs[0]
|
29 |
-
else:
|
30 |
-
return []
|
31 |
-
|
32 |
-
|
33 |
-
def identify(embs_src, embs_gal, labels_gal, imgs_gal, thresh=None):
|
34 |
-
all_dists = cosine_distances(embs_src, embs_gal)
|
35 |
-
ident_names, ident_dists, ident_imgs = [], [], []
|
36 |
-
for dists in all_dists:
|
37 |
-
idx_min = np.argmin(dists)
|
38 |
-
if thresh and dists[idx_min] > thresh:
|
39 |
-
dist = dists[idx_min]
|
40 |
-
pred = None
|
41 |
-
else:
|
42 |
-
dist = dists[idx_min]
|
43 |
-
pred = idx_min
|
44 |
-
ident_names.append(labels_gal[pred] if pred is not None else "Unknown")
|
45 |
-
ident_dists.append(dist)
|
46 |
-
ident_imgs.append(imgs_gal[pred] if pred is not None else None)
|
47 |
-
return ident_names, ident_dists, ident_imgs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools/nametypes.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import NamedTuple, List
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class Detection(NamedTuple):
|
6 |
+
bbox: List[int]
|
7 |
+
landmarks: List[List[int]]
|
8 |
+
name: str = None
|
9 |
+
face: np.ndarray = None
|
10 |
+
emdedding: np.ndarray = None
|
11 |
+
emdedding_match: np.ndarray = None
|
12 |
+
face_match: np.ndarray = None
|
13 |
+
distance: float = None
|
14 |
+
|
15 |
+
|
16 |
+
class Stats(NamedTuple):
|
17 |
+
fps: float
|
18 |
+
resolution: List[int]
|
19 |
+
num_faces: int
|
20 |
+
detection: float
|
21 |
+
normalization: float
|
22 |
+
inference: float
|
23 |
+
recognition: float
|
24 |
+
drawing: float
|
25 |
+
|
26 |
+
|
27 |
+
class Identity(NamedTuple):
|
28 |
+
name: str
|
29 |
+
embedding: np.ndarray
|
30 |
+
image: np.ndarray
|
tools/utils.py
CHANGED
@@ -1,66 +1,172 @@
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
import cv2
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
-
def
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
idx = row * num_cols + i
|
22 |
-
|
23 |
-
if idx < num_images:
|
24 |
-
img = images[idx]
|
25 |
-
if len(names) == 0:
|
26 |
-
names = ["Unknown"] * len(images)
|
27 |
-
name = names[idx]
|
28 |
-
col.image(img, caption=name, channels=channels, width=112)
|
29 |
-
|
30 |
-
|
31 |
-
def show_faces(images, names, distances, gal_images, num_cols, channels="RGB", display=st):
|
32 |
-
if len(images) == 0 or len(names) == 0:
|
33 |
-
display.write("No faces detected, or gallery empty!")
|
34 |
-
return
|
35 |
-
# Calculate the number of rows and columns
|
36 |
-
num_rows = -(
|
37 |
-
-len(images) // num_cols
|
38 |
-
) # This also handles the case when num_images is not a multiple of num_cols
|
39 |
-
|
40 |
-
for row in range(num_rows):
|
41 |
-
# Create the columns
|
42 |
-
cols = display.columns(num_cols)
|
43 |
-
|
44 |
-
for i, col in enumerate(cols):
|
45 |
-
idx = row * num_cols + i
|
46 |
-
|
47 |
-
if idx < len(images):
|
48 |
-
img = images[idx]
|
49 |
-
name = names[idx]
|
50 |
-
dist = distances[idx]
|
51 |
-
col.image(img, channels=channels, width=112)
|
52 |
-
|
53 |
-
if gal_images[idx] is not None:
|
54 |
-
col.text(" ⬍ matching ⬍")
|
55 |
-
col.image(gal_images[idx], caption=name, channels=channels, width=112)
|
56 |
-
else:
|
57 |
-
col.markdown("")
|
58 |
-
col.write("No match found")
|
59 |
-
col.markdown(
|
60 |
-
f"**Distance: {dist:.4f}**" if dist else f"**Distance: -**"
|
61 |
)
|
|
|
62 |
else:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import urllib.request
|
4 |
+
from pathlib import Path
|
5 |
import streamlit as st
|
6 |
+
from twilio.rest import Client
|
7 |
+
import os
|
8 |
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import hashlib
|
11 |
|
12 |
+
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
@st.cache_data
|
17 |
+
def get_ice_servers(name="twilio"):
|
18 |
+
"""Get ICE servers from Twilio.
|
19 |
+
Returns:
|
20 |
+
List of ICE servers.
|
21 |
+
"""
|
22 |
+
if name == "twilio":
|
23 |
+
# Ref: https://www.twilio.com/docs/stun-turn/api
|
24 |
+
try:
|
25 |
+
account_sid = os.environ["TWILIO_ACCOUNT_SID"]
|
26 |
+
auth_token = os.environ["TWILIO_AUTH_TOKEN"]
|
27 |
+
except KeyError:
|
28 |
+
logger.warning(
|
29 |
+
"Twilio credentials are not set. Fallback to a free STUN server from Google."
|
30 |
+
)
|
31 |
+
return [{"urls": ["stun:stun.l.google.com:19302"]}]
|
32 |
+
|
33 |
+
client = Client(account_sid, auth_token)
|
34 |
+
|
35 |
+
token = client.tokens.create()
|
36 |
+
|
37 |
+
return token.ice_servers
|
38 |
+
|
39 |
+
elif name == "metered":
|
40 |
+
try:
|
41 |
+
username = os.environ["METERED_USERNAME"]
|
42 |
+
credential = os.environ["METERED_CREDENTIAL"]
|
43 |
+
except KeyError:
|
44 |
+
logger.warning(
|
45 |
+
"Metered credentials are not set. Fallback to a free STUN server from Google."
|
46 |
+
)
|
47 |
+
return [{"urls": ["stun:stun.l.google.com:19302"]}]
|
48 |
+
|
49 |
+
ice_servers = [
|
50 |
+
{"url": "stun:a.relay.metered.ca:80", "urls": "stun:a.relay.metered.ca:80"},
|
51 |
+
{
|
52 |
+
"url": "turn:a.relay.metered.ca:80",
|
53 |
+
"username": username,
|
54 |
+
"urls": "turn:a.relay.metered.ca:80",
|
55 |
+
"credential": credential,
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"url": "turn:a.relay.metered.ca:80?transport=tcp",
|
59 |
+
"username": username,
|
60 |
+
"urls": "turn:a.relay.metered.ca:80?transport=tcp",
|
61 |
+
"credential": credential,
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"url": "turn:a.relay.metered.ca:443",
|
65 |
+
"username": username,
|
66 |
+
"urls": "turn:a.relay.metered.ca:443",
|
67 |
+
"credential": credential,
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"url": "turn:a.relay.metered.ca:443?transport=tcp",
|
71 |
+
"username": username,
|
72 |
+
"urls": "turn:a.relay.metered.ca:443?transport=tcp",
|
73 |
+
"credential": credential,
|
74 |
+
},
|
75 |
+
]
|
76 |
+
return ice_servers
|
77 |
+
else:
|
78 |
+
raise ValueError(f"Unknown name: {name}")
|
79 |
+
|
80 |
+
|
81 |
+
def get_hash(filepath):
|
82 |
+
hasher = hashlib.sha256()
|
83 |
+
with open(filepath, "rb") as file:
|
84 |
+
for chunk in iter(lambda: file.read(65535), b""):
|
85 |
+
hasher.update(chunk)
|
86 |
+
return hasher.hexdigest()
|
87 |
|
88 |
|
89 |
+
def download_file(url, model_path: Path, file_hash=None):
|
90 |
+
if model_path.exists():
|
91 |
+
if file_hash:
|
92 |
+
hasher = hashlib.sha256()
|
93 |
+
with open(model_path, "rb") as file:
|
94 |
+
for chunk in iter(lambda: file.read(65535), b""):
|
95 |
+
hasher.update(chunk)
|
96 |
+
if not hasher.hexdigest() == file_hash:
|
97 |
+
print(
|
98 |
+
"A local file was found, but it seems to be incomplete or outdated because the file hash does not "
|
99 |
+
"match the original value of "
|
100 |
+
+ file_hash
|
101 |
+
+ " so data will be downloaded."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
)
|
103 |
+
download = True
|
104 |
else:
|
105 |
+
print("Using a verified local file.")
|
106 |
+
download = False
|
107 |
+
else:
|
108 |
+
model_path.mkdir(parents=True, exist_ok=True)
|
109 |
+
print("Downloading data ...")
|
110 |
+
download = True
|
111 |
+
|
112 |
+
if download:
|
113 |
+
|
114 |
+
# These are handles to two visual elements to animate.
|
115 |
+
weights_warning, progress_bar = None, None
|
116 |
+
try:
|
117 |
+
weights_warning = st.warning("Downloading %s..." % url)
|
118 |
+
progress_bar = st.progress(0)
|
119 |
+
with open(model_path, "wb") as output_file:
|
120 |
+
with urllib.request.urlopen(url) as response:
|
121 |
+
length = int(response.info()["Content-Length"])
|
122 |
+
counter = 0.0
|
123 |
+
MEGABYTES = 2.0**20.0
|
124 |
+
while True:
|
125 |
+
data = response.read(8192)
|
126 |
+
if not data:
|
127 |
+
break
|
128 |
+
counter += len(data)
|
129 |
+
output_file.write(data)
|
130 |
+
|
131 |
+
# We perform animation by overwriting the elements.
|
132 |
+
weights_warning.warning(
|
133 |
+
"Downloading %s... (%6.2f/%6.2f MB)"
|
134 |
+
% (url, counter / MEGABYTES, length / MEGABYTES)
|
135 |
+
)
|
136 |
+
progress_bar.progress(min(counter / length, 1.0))
|
137 |
+
|
138 |
+
# Finally, we remove these visual elements by calling .empty().
|
139 |
+
finally:
|
140 |
+
if weights_warning is not None:
|
141 |
+
weights_warning.empty()
|
142 |
+
if progress_bar is not None:
|
143 |
+
progress_bar.empty()
|
144 |
+
|
145 |
+
|
146 |
+
# Function to format floats within a list
|
147 |
+
def format_floats(val):
|
148 |
+
if isinstance(val, list):
|
149 |
+
return [f"{num:.2f}" for num in val]
|
150 |
+
if isinstance(val, np.ndarray):
|
151 |
+
return np.asarray([f"{num:.2f}" for num in val])
|
152 |
+
else:
|
153 |
+
return val
|
154 |
+
|
155 |
+
|
156 |
+
def display_match(d):
|
157 |
+
im = np.concatenate([d.face, d.face_match])
|
158 |
+
border_size = 2
|
159 |
+
border = cv2.copyMakeBorder(
|
160 |
+
im,
|
161 |
+
top=border_size,
|
162 |
+
bottom=border_size,
|
163 |
+
left=border_size,
|
164 |
+
right=border_size,
|
165 |
+
borderType=cv2.BORDER_CONSTANT,
|
166 |
+
value=(255, 255, 120)
|
167 |
+
)
|
168 |
+
return border
|
169 |
+
|
170 |
+
|
171 |
+
def rgb(r, g, b):
|
172 |
+
return '#{:02x}{:02x}{:02x}'.format(r, g, b)
|
tools/webcam.py
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from streamlit_webrtc import webrtc_streamer, WebRtcMode
|
3 |
-
import os
|
4 |
-
from twilio.rest import Client
|
5 |
-
|
6 |
-
|
7 |
-
account_sid = os.environ['TWILIO_ACCOUNT_SID']
|
8 |
-
auth_token = os.environ['TWILIO_AUTH_TOKEN']
|
9 |
-
client = Client(account_sid, auth_token)
|
10 |
-
|
11 |
-
token = client.tokens.create()
|
12 |
-
|
13 |
-
|
14 |
-
RTC_CONFIGURATION={
|
15 |
-
"iceServers": token.ice_servers
|
16 |
-
}
|
17 |
-
|
18 |
-
def init_webcam(width=680):
|
19 |
-
ctx = webrtc_streamer(
|
20 |
-
key="FaceIDAppDemo",
|
21 |
-
mode=WebRtcMode.SENDONLY,
|
22 |
-
rtc_configuration=RTC_CONFIGURATION,
|
23 |
-
media_stream_constraints={
|
24 |
-
"video": {
|
25 |
-
"width": {
|
26 |
-
"min": width,
|
27 |
-
"ideal": width,
|
28 |
-
"max": width,
|
29 |
-
},
|
30 |
-
},
|
31 |
-
"audio": False,
|
32 |
-
},
|
33 |
-
|
34 |
-
video_receiver_size=1,
|
35 |
-
async_processing=True,
|
36 |
-
)
|
37 |
-
return ctx.video_receiver
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|