CostEvaluator / app.py
jadehardouin's picture
Update app.py
2d9906b
raw
history blame
11.8 kB
import gradio as gr
import pandas as pd
text = "<h1 style='text-align: center; color: blue; font-size: 30px;'>TCO Comparison Calculator"
text1 = "<h1 style='text-align: center; color: blue; font-size: 20px;'>First solution"
text2 = "<h1 style='text-align: center; color: blue; font-size: 20px;'>Second solution"
text3 = "<h1 style='text-align: center; color: blue; font-size: 25px;'>Comparison"
text4 = "<h1 style='text-align: center; color: blue; font-size: 25px;'>Results"
diy_value = 0
saas_value = 0
def calculate_tco(model_choice, vm_rental_choice, out_diy):
VM_cost_per_hour=3.6730 #at Azure for the basic pay as you go option
maxed_out = 0.8 #percentage of time the VM is maxed out
used = 0.5 #percentage of time the VM is used
tokens_per_request = 64
if model_choice == "Llama-2-7B":
tokens_per_second=694.38
elif model_choice == "Llama-2-13B":
tokens_per_second=1000
elif model_choice == "Llama-2-70B":
tokens_per_second=10000
if vm_rental_choice == "pay as you go":
reduction = 0
elif vm_rental_choice == "1 year reserved":
reduction = 0.34
elif vm_rental_choice == "3 years reserved":
reduction = 0.62
homemade_cost_per_token = VM_cost_per_hour * (1 - reduction) / (tokens_per_second * 3600 * maxed_out * used)
homemade_cost_per_request = tokens_per_request * homemade_cost_per_token
out_diy = homemade_cost_per_token
return out_diy
def calculate_tco_2(model_provider, context, out_saas):
tokens_per_request = 64
if model_provider == "OpenAI":
if context == "4K context":
saas_cost_per_token = 0.00035
saas_cost_per_request = saas_cost_per_token * tokens_per_request
elif context == "16K context" :
saas_cost_per_token = 0.0007
saas_cost_per_request = saas_cost_per_token * tokens_per_request
out_saas = saas_cost_per_token
return out_saas
def extract_cost_from_text(text):
try:
cost = float(text)
return cost
except ValueError as e:
raise ValueError("Invalid cost text format")
def compare(cost_text1, cost_text2):
try:
# Extract the costs from the input strings
cost1 = extract_cost_from_text(cost_text1)
cost2 = extract_cost_from_text(cost_text2)
r = cost1 / cost2
if r < 1:
comparison_result = f"First solution is cheaper, with a ratio of {r:.2f}."
elif r > 1:
comparison_result = f"Second solution is cheaper, with a ratio of {r:.2f}."
else:
comparison_result = "Both solutions will cost the same."
return comparison_result
except ValueError as e:
return f"Error: {str(e)}"
def update_plot(diy_value, saas_value):
data = pd.DataFrame(
{
"Solution": ["Home-made", "SaaS"],
"Cost/token ($)": [diy_value, saas_value],
}
)
return gr.BarPlot.update(data, x="Solution", y="Cost/token ($)")
description=f"""
<p>In this demo application, we help you compare different solutions for your AI incorporation plans, such as open-source or SaaS.</p>
<p>First, you'll have to choose the two solutions you'd like to compare. Then, follow the instructions to select your configurations for each solution and we will compute the cost/request accordingly to them. Eventually, you can compare both solutions to evaluate which one best suits your needs, in the short or long term.</p>
"""
description1=f"""
<p>This interface provides you with the cost per request you get using the open-source solution, based on the model you choose to use and how long you're planning to use it.</p>
<p>The selected prices for a Virtual Machine rental come from Azure's VM rental plans, which can offer reductions for long-term reserved usage.</p>
<p>To compute this cost per requets, some adjustments were chosen: the VM is an A100 40GB, supposedly maxed out at 80% and utilized 50% of the time in a full day. Plus, the number of tokens per request was set to 64.</p>
<p>To see the formula used to compute the cost/request, check the box just below!</p>
"""
description2=f"""
<p>This interface provides you with the cost per request resulting from the AI model provider you choose and the number of tokens you select for context, which the model will take into account when processing input texts.</p>
<p>To compute this cost per request, some adjustments were chosen: the number of tokens per request was set to 64.</p>
<p>To see the formula used to compute the cost/request, check the box just below!</p>
"""
description3=f"""
<p>This interface compares the cost per request for the two solutions you selected and gives you an insight of whether a solution is more valuable in the long term.</p>
"""
models = ["Llama-2-7B", "Llama-2-13B", "Llama-2-70B"]
vm_rental_choice = ["pay as you go", "1 year reserved", "3 years reserved"]
model_provider = ["OpenAI"]
context = ["4K context", "16K context"]
error_box = gr.Textbox(label="Error", visible=False)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(value=text)
gr.Markdown(value=description)
out_diy = gr.State(value=0)
out_saas = gr.State(value=0)
out_diy2 = gr.State(value=0)
out_saas2 = gr.State(value=0)
with gr.Row():
with gr.Column():
solution_selection = gr.Dropdown(["SaaS", "Open-source"], label="Select a Solution")
with gr.Row(visible=False) as title_column:
gr.Markdown(value=text1)
with gr.Row(visible=False) as text_diy_column:
gr.Markdown(description1)
with gr.Row(visible=False) as input_diy_column:
model_inp = gr.Dropdown(models, label="Select an AI Model")
rental_plan_inp = gr.Dropdown(vm_rental_choice, label="Select a VM Rental Plan")
rental_plan_inp.change(fn=calculate_tco, inputs=[model_inp, rental_plan_inp, out_diy], outputs=out_diy)
with gr.Row(visible=False) as text_saas_column:
gr.Markdown(description2)
with gr.Row(visible=False) as input_saas_column:
model_provider_inp = gr.Dropdown(model_provider, label="Model Provider")
context_inp = gr.Dropdown(context, label="Context")
context_inp.change(fn=calculate_tco_2, inputs=[model_provider_inp, context_inp, out_saas], outputs=out_saas)
def submit(solution_selection):
if solution_selection == "Open-source":
return {
title_column: gr.update(visible=True),
text_diy_column: gr.update(visible=True),
input_diy_column: gr.update(visible=True),
text_saas_column: gr.update(visible=False),
input_saas_column: gr.update(visible=False),
}
else:
return {
text_diy_column: gr.update(visible=False),
input_diy_column: gr.update(visible=False),
title_column: gr.update(visible=True),
text_saas_column: gr.update(visible=True),
input_saas_column: gr.update(visible=True),
}
solution_selection.change(
submit,
solution_selection,
[out_saas, text_diy_column, title_column, text_saas_column, model_inp, rental_plan_inp, model_provider_inp, context_inp, input_diy_column, input_saas_column],
)
# gr.Divider(style="vertical", thickness=2, color="blue")
with gr.Column():
solution_selection2 = gr.Dropdown(["SaaS", "Open-source"], label="Select a Solution")
with gr.Row(visible=False) as title_column2:
gr.Markdown(value=text2)
with gr.Row(visible=False) as text_diy_column2:
gr.Markdown(description1)
with gr.Row(visible=False) as input_diy_column2:
model_inp2 = gr.Dropdown(models, label="Select an AI Model")
rental_plan_inp2 = gr.Dropdown(vm_rental_choice, label="Select a VM Rental Plan")
rental_plan_inp2.change(fn=calculate_tco, inputs=[model_inp2, rental_plan_inp2, out_diy2], outputs=out_diy2)
with gr.Row(visible=False) as text_saas_column2:
gr.Markdown(description2)
with gr.Row(visible=False) as input_saas_column2:
model_provider_inp2 = gr.Dropdown(['OpenAI'], label="Model Provider")
context_inp2 = gr.Dropdown(['4K context', '16K context'], label="Context")
context_inp2.change(fn=calculate_tco_2, inputs=[model_provider_inp2, context_inp2, out_saas2], outputs=out_saas2)
def submit2(solution_selection2):
if solution_selection2 == "Open-source":
return {
title_column2: gr.update(visible=True),
text_diy_column2: gr.update(visible=True),
input_diy_column2: gr.update(visible=True),
text_saas_column2: gr.update(visible=False),
input_saas_column2: gr.update(visible=False),
}
else:
return {
text_diy_column2: gr.update(visible=False),
input_diy_column2: gr.update(visible=False),
title_column2: gr.update(visible=True),
text_saas_column2: gr.update(visible=True),
input_saas_column2: gr.update(visible=True),
}
solution_selection2.change(
submit2,
solution_selection2,
[out_diy2, out_saas2, title_column2, text_diy_column2, text_saas_column2, model_inp2, rental_plan_inp2, model_provider_inp2, context_inp2, input_diy_column2, input_saas_column2],
)
with gr.Row():
with gr.Column():
with gr.Row():
gr.Markdown(text3)
with gr.Row():
plot = gr.BarPlot(title="Comparison", x_title="Solution", y_title="Cost/token ($)", interactive=True, width=500)
if solution_selection=="Open-source":
context_inp2.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot)
model_provider_inp2.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot)
rental_plan_inp.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot)
model_inp.change(fn=update_plot, inputs=[out_diy, out_saas2], outputs=plot)
else:
rental_plan_inp2.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot)
context_inp.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot)
model_provider_inp.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot)
model_inp2.change(fn=update_plot, inputs=[out_diy2, out_saas], outputs=plot)
demo.launch()